Source code for opt_einsum.paths

"""
Contains the path technology behind opt_einsum in addition to several path helpers
"""

import functools
import heapq
import itertools
import random
from collections import Counter, OrderedDict, defaultdict

import numpy as np

from . import helpers

__all__ = [
    "optimal", "BranchBound", "branch", "greedy", "auto", "auto_hq", "get_path_fn", "DynamicProgramming",
    "dynamic_programming"
]

_UNLIMITED_MEM = {-1, None, float('inf')}


[docs]class PathOptimizer(object): """Base class for different path optimizers to inherit from. Subclassed optimizers should define a call method with signature:: def __call__(self, inputs, output, size_dict, memory_limit=None): \"\"\" Parameters ---------- inputs : list[set[str]] The indices of each input array. outputs : set[str] The output indices size_dict : dict[str, int] The size of each index memory_limit : int, optional If given, the maximum allowed memory. \"\"\" # ... compute path here ... return path where ``path`` is a list of int-tuples specifiying a contraction order. """ def _check_args_against_first_call(self, inputs, output, size_dict): """Utility that stateful optimizers can use to ensure they are not called with different contractions across separate runs. """ args = (inputs, output, size_dict) if not hasattr(self, '_first_call_args'): # simply set the attribute as currently there is no global PathOptimizer init self._first_call_args = args elif args != self._first_call_args: raise ValueError("The arguments specifiying the contraction that this path optimizer " "instance was called with have changed - try creating a new instance.") def __call__(self, inputs, output, size_dict, memory_limit=None): raise NotImplementedError
def ssa_to_linear(ssa_path): """ Convert a path with static single assignment ids to a path with recycled linear ids. For example:: >>> ssa_to_linear([(0, 3), (2, 4), (1, 5)]) [(0, 3), (1, 2), (0, 1)] """ ids = np.arange(1 + max(map(max, ssa_path)), dtype=np.int32) path = [] for ssa_ids in ssa_path: path.append(tuple(int(ids[ssa_id]) for ssa_id in ssa_ids)) for ssa_id in ssa_ids: ids[ssa_id:] -= 1 return path def linear_to_ssa(path): """ Convert a path with recycled linear ids to a path with static single assignment ids. For example:: >>> linear_to_ssa([(0, 3), (1, 2), (0, 1)]) [(0, 3), (2, 4), (1, 5)] """ num_inputs = sum(map(len, path)) - len(path) + 1 linear_to_ssa = list(range(num_inputs)) new_ids = itertools.count(num_inputs) ssa_path = [] for ids in path: ssa_path.append(tuple(linear_to_ssa[id_] for id_ in ids)) for id_ in sorted(ids, reverse=True): del linear_to_ssa[id_] linear_to_ssa.append(next(new_ids)) return ssa_path def calc_k12_flops(inputs, output, remaining, i, j, size_dict): """ Calculate the resulting indices and flops for a potential pairwise contraction - used in the recursive (optimal/branch) algorithms. Parameters ---------- inputs : tuple[frozenset[str]] The indices of each tensor in this contraction, note this includes tensors unavaiable to contract as static single assignment is used -> contracted tensors are not removed from the list. output : frozenset[str] The set of output indices for the whole contraction. remaining : frozenset[int] The set of indices (corresponding to ``inputs``) of tensors still available to contract. i : int Index of potential tensor to contract. j : int Index of potential tensor to contract. size_dict dict[str, int] Size mapping of all the indices. Returns ------- k12 : frozenset The resulting indices of the potential tensor. cost : int Estimated flop count of operation. """ k1, k2 = inputs[i], inputs[j] either = k1 | k2 shared = k1 & k2 keep = frozenset.union(output, *map(inputs.__getitem__, remaining - {i, j})) k12 = either & keep cost = helpers.flop_count(either, shared - keep, 2, size_dict) return k12, cost def _compute_oversize_flops(inputs, remaining, output, size_dict): """ Compute the flop count for a contraction of all remaining arguments. This is used when a memory limit means that no pairwise contractions can be made. """ idx_contraction = frozenset.union(*map(inputs.__getitem__, remaining)) inner = idx_contraction - output num_terms = len(remaining) return helpers.flop_count(idx_contraction, inner, num_terms, size_dict)
[docs]def optimal(inputs, output, size_dict, memory_limit=None): """ Computes all possible pair contractions in a depth-first recursive manner, sieving results based on ``memory_limit`` and the best path found so far. Returns the lowest cost path. This algorithm scales factoriallly with respect to the elements in the list ``input_sets``. Parameters ---------- inputs : list List of sets that represent the lhs side of the einsum subscript. output : set Set that represents the rhs side of the overall einsum subscript. size_dict : dictionary Dictionary of index sizes. memory_limit : int The maximum number of elements in a temporary array. Returns ------- path : list The optimal contraction order within the memory limit constraint. Examples -------- >>> isets = [set('abd'), set('ac'), set('bdc')] >>> oset = set('') >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} >>> optimal(isets, oset, idx_sizes, 5000) [(0, 2), (0, 1)] """ inputs = tuple(map(frozenset, inputs)) output = frozenset(output) best = {'flops': float('inf'), 'ssa_path': (tuple(range(len(inputs))), )} size_cache = {} result_cache = {} def _optimal_iterate(path, remaining, inputs, flops): # reached end of path (only ever get here if flops is best found so far) if len(remaining) == 1: best['flops'] = flops best['ssa_path'] = path return # check all possible remaining paths for i, j in itertools.combinations(remaining, 2): if i > j: i, j = j, i key = (inputs[i], inputs[j]) try: k12, flops12 = result_cache[key] except KeyError: k12, flops12 = result_cache[key] = calc_k12_flops(inputs, output, remaining, i, j, size_dict) # sieve based on current best flops new_flops = flops + flops12 if new_flops >= best['flops']: continue # sieve based on memory limit if memory_limit not in _UNLIMITED_MEM: try: size12 = size_cache[k12] except KeyError: size12 = size_cache[k12] = helpers.compute_size_by_dict(k12, size_dict) # possibly terminate this path with an all-terms einsum if size12 > memory_limit: new_flops = flops + _compute_oversize_flops(inputs, remaining, output, size_dict) if new_flops < best['flops']: best['flops'] = new_flops best['ssa_path'] = path + (tuple(remaining), ) continue # add contraction and recurse into all remaining _optimal_iterate(path=path + ((i, j), ), inputs=inputs + (k12, ), remaining=remaining - {i, j} | {len(inputs)}, flops=new_flops) _optimal_iterate(path=(), inputs=inputs, remaining=set(range(len(inputs))), flops=0) return ssa_to_linear(best['ssa_path'])
# functions for comparing which of two paths is 'better' def better_flops_first(flops, size, best_flops, best_size): return (flops, size) < (best_flops, best_size) def better_size_first(flops, size, best_flops, best_size): return (size, flops) < (best_size, best_flops) _BETTER_FNS = { 'flops': better_flops_first, 'size': better_size_first, } def get_better_fn(key): return _BETTER_FNS[key] # functions for assigning a heuristic 'cost' to a potential contraction def cost_memory_removed(size12, size1, size2, k12, k1, k2): """The default heuristic cost, corresponding to the total reduction in memory of performing a contraction. """ return size12 - size1 - size2 def cost_memory_removed_jitter(size12, size1, size2, k12, k1, k2): """Like memory-removed, but with a slight amount of noise that breaks ties and thus jumbles the contractions a bit. """ return random.gauss(1.0, 0.01) * (size12 - size1 - size2) _COST_FNS = { 'memory-removed': cost_memory_removed, 'memory-removed-jitter': cost_memory_removed_jitter, }
[docs]class BranchBound(PathOptimizer): """ Explores possible pair contractions in a depth-first recursive manner like the ``optimal`` approach, but with extra heuristic early pruning of branches as well sieving by ``memory_limit`` and the best path found so far. Returns the lowest cost path. This algorithm still scales factorially with respect to the elements in the list ``input_sets`` if ``nbranch`` is not set, but it scales exponentially like ``nbranch**len(input_sets)`` otherwise. Parameters ---------- nbranch : None or int, optional How many branches to explore at each contraction step. If None, explore all possible branches. If an integer, branch into this many paths at each step. Defaults to None. cutoff_flops_factor : float, optional If at any point, a path is doing this much worse than the best path found so far was, terminate it. The larger this is made, the more paths will be fully explored and the slower the algorithm. Defaults to 4. minimize : {'flops', 'size'}, optional Whether to optimize the path with regard primarily to the total estimated flop-count, or the size of the largest intermediate. The option not chosen will still be used as a secondary criterion. cost_fn : callable, optional A function that returns a heuristic 'cost' of a potential contraction with which to sort candidates. Should have signature ``cost_fn(size12, size1, size2, k12, k1, k2)``. """
[docs] def __init__(self, nbranch=None, cutoff_flops_factor=4, minimize='flops', cost_fn='memory-removed'): self.nbranch = nbranch self.cutoff_flops_factor = cutoff_flops_factor self.minimize = minimize self.cost_fn = _COST_FNS.get(cost_fn, cost_fn) self.better = get_better_fn(minimize) self.best = {'flops': float('inf'), 'size': float('inf')} self.best_progress = defaultdict(lambda: float('inf'))
@property def path(self): return ssa_to_linear(self.best['ssa_path']) def __call__(self, inputs, output, size_dict, memory_limit=None): """ Parameters ---------- input_sets : list List of sets that represent the lhs side of the einsum subscript output_set : set Set that represents the rhs side of the overall einsum subscript idx_dict : dictionary Dictionary of index sizes memory_limit : int The maximum number of elements in a temporary array Returns ------- path : list The contraction order within the memory limit constraint. Examples -------- >>> isets = [set('abd'), set('ac'), set('bdc')] >>> oset = set('') >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} >>> optimal(isets, oset, idx_sizes, 5000) [(0, 2), (0, 1)] """ self._check_args_against_first_call(inputs, output, size_dict) inputs = tuple(map(frozenset, inputs)) output = frozenset(output) size_cache = {k: helpers.compute_size_by_dict(k, size_dict) for k in inputs} result_cache = {} def _branch_iterate(path, inputs, remaining, flops, size): # reached end of path (only ever get here if flops is best found so far) if len(remaining) == 1: self.best['size'] = size self.best['flops'] = flops self.best['ssa_path'] = path return def _assess_candidate(k1, k2, i, j): # find resulting indices and flops try: k12, flops12 = result_cache[k1, k2] except KeyError: k12, flops12 = result_cache[k1, k2] = calc_k12_flops(inputs, output, remaining, i, j, size_dict) try: size12 = size_cache[k12] except KeyError: size12 = size_cache[k12] = helpers.compute_size_by_dict(k12, size_dict) new_flops = flops + flops12 new_size = max(size, size12) # sieve based on current best i.e. check flops and size still better if not self.better(new_flops, new_size, self.best['flops'], self.best['size']): return None # compare to how the best method was doing as this point if new_flops < self.best_progress[len(inputs)]: self.best_progress[len(inputs)] = new_flops # sieve based on current progress relative to best elif new_flops > self.cutoff_flops_factor * self.best_progress[len(inputs)]: return None # sieve based on memory limit if (memory_limit not in _UNLIMITED_MEM) and (size12 > memory_limit): # terminate path here, but check all-terms contract first new_flops = flops + _compute_oversize_flops(inputs, remaining, output, size_dict) if new_flops < self.best['flops']: self.best['flops'] = new_flops self.best['ssa_path'] = path + (tuple(remaining), ) return None # set cost heuristic in order to locally sort possible contractions size1, size2 = size_cache[inputs[i]], size_cache[inputs[j]] cost = self.cost_fn(size12, size1, size2, k12, k1, k2) return cost, flops12, new_flops, new_size, (i, j), k12 # check all possible remaining paths candidates = [] for i, j in itertools.combinations(remaining, 2): if i > j: i, j = j, i k1, k2 = inputs[i], inputs[j] # initially ignore outer products if k1.isdisjoint(k2): continue candidate = _assess_candidate(k1, k2, i, j) if candidate: heapq.heappush(candidates, candidate) # assess outer products if nothing left if not candidates: for i, j in itertools.combinations(remaining, 2): if i > j: i, j = j, i k1, k2 = inputs[i], inputs[j] candidate = _assess_candidate(k1, k2, i, j) if candidate: heapq.heappush(candidates, candidate) # recurse into all or some of the best candidate contractions bi = 0 while (self.nbranch is None or bi < self.nbranch) and candidates: _, _, new_flops, new_size, (i, j), k12 = heapq.heappop(candidates) _branch_iterate(path=path + ((i, j), ), inputs=inputs + (k12, ), remaining=(remaining - {i, j}) | {len(inputs)}, flops=new_flops, size=new_size) bi += 1 _branch_iterate(path=(), inputs=inputs, remaining=set(range(len(inputs))), flops=0, size=0) return self.path
[docs]def branch(inputs, output, size_dict, memory_limit=None, **optimizer_kwargs): optimizer = BranchBound(**optimizer_kwargs) return optimizer(inputs, output, size_dict, memory_limit)
branch_all = functools.partial(branch, nbranch=None) branch_2 = functools.partial(branch, nbranch=2) branch_1 = functools.partial(branch, nbranch=1) def _get_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2, cost_fn): either = k1 | k2 two = k1 & k2 one = either - two k12 = (either & output) | (two & dim_ref_counts[3]) | (one & dim_ref_counts[2]) cost = cost_fn(helpers.compute_size_by_dict(k12, sizes), footprints[k1], footprints[k2], k12, k1, k2) id1 = remaining[k1] id2 = remaining[k2] if id1 > id2: k1, id1, k2, id2 = k2, id2, k1, id1 cost = cost, id2, id1 # break ties to ensure determinism return cost, k1, k2, k12 def _push_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2s, queue, push_all, cost_fn): candidates = (_get_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2, cost_fn) for k2 in k2s) if push_all: # want to do this if we e.g. are using a custom 'choose_fn' for candidate in candidates: heapq.heappush(queue, candidate) else: heapq.heappush(queue, min(candidates)) def _update_ref_counts(dim_to_keys, dim_ref_counts, dims): for dim in dims: count = len(dim_to_keys[dim]) if count <= 1: dim_ref_counts[2].discard(dim) dim_ref_counts[3].discard(dim) elif count == 2: dim_ref_counts[2].add(dim) dim_ref_counts[3].discard(dim) else: dim_ref_counts[2].add(dim) dim_ref_counts[3].add(dim) def _simple_chooser(queue, remaining): """Default contraction chooser that simply takes the minimum cost option. """ cost, k1, k2, k12 = heapq.heappop(queue) if k1 not in remaining or k2 not in remaining: return None # candidate is obsolete return cost, k1, k2, k12 def ssa_greedy_optimize(inputs, output, sizes, choose_fn=None, cost_fn='memory-removed'): """ This is the core function for :func:`greedy` but produces a path with static single assignment ids rather than recycled linear ids. SSA ids are cheaper to work with and easier to reason about. """ if len(inputs) == 1: # Perform a single contraction to match output shape. return [(0, )] # set the function that assigns a heuristic cost to a possible contraction cost_fn = _COST_FNS.get(cost_fn, cost_fn) # set the function that chooses which contraction to take if choose_fn is None: choose_fn = _simple_chooser push_all = False else: # assume chooser wants access to all possible contractions push_all = True # A dim that is common to all tensors might as well be an output dim, since it # cannot be contracted until the final step. This avoids an expensive all-pairs # comparison to search for possible contractions at each step, leading to speedup # in many practical problems where all tensors share a common batch dimension. inputs = list(map(frozenset, inputs)) output = frozenset(output) | frozenset.intersection(*inputs) # Deduplicate shapes by eagerly computing Hadamard products. remaining = {} # key -> ssa_id ssa_ids = itertools.count(len(inputs)) ssa_path = [] for ssa_id, key in enumerate(inputs): if key in remaining: ssa_path.append((remaining[key], ssa_id)) remaining[key] = next(ssa_ids) else: remaining[key] = ssa_id # Keep track of possible contraction dims. dim_to_keys = defaultdict(set) for key in remaining: for dim in key - output: dim_to_keys[dim].add(key) # Keep track of the number of tensors using each dim; when the dim is no longer # used it can be contracted. Since we specialize to binary ops, we only care about # ref counts of >=2 or >=3. dim_ref_counts = { count: set(dim for dim, keys in dim_to_keys.items() if len(keys) >= count) - output for count in [2, 3] } # Compute separable part of the objective function for contractions. footprints = {key: helpers.compute_size_by_dict(key, sizes) for key in remaining} # Find initial candidate contractions. queue = [] for dim, keys in dim_to_keys.items(): keys = sorted(keys, key=remaining.__getitem__) for i, k1 in enumerate(keys[:-1]): k2s = keys[1 + i:] _push_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2s, queue, push_all, cost_fn) # Greedily contract pairs of tensors. while queue: con = choose_fn(queue, remaining) if con is None: continue # allow choose_fn to flag all candidates obsolete cost, k1, k2, k12 = con ssa_id1 = remaining.pop(k1) ssa_id2 = remaining.pop(k2) for dim in k1 - output: dim_to_keys[dim].remove(k1) for dim in k2 - output: dim_to_keys[dim].remove(k2) ssa_path.append((ssa_id1, ssa_id2)) if k12 in remaining: ssa_path.append((remaining[k12], next(ssa_ids))) else: for dim in k12 - output: dim_to_keys[dim].add(k12) remaining[k12] = next(ssa_ids) _update_ref_counts(dim_to_keys, dim_ref_counts, k1 | k2 - output) footprints[k12] = helpers.compute_size_by_dict(k12, sizes) # Find new candidate contractions. k1 = k12 k2s = set(k2 for dim in k1 for k2 in dim_to_keys[dim]) k2s.discard(k1) if k2s: _push_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2s, queue, push_all, cost_fn) # Greedily compute pairwise outer products. queue = [(helpers.compute_size_by_dict(key & output, sizes), ssa_id, key) for key, ssa_id in remaining.items()] heapq.heapify(queue) _, ssa_id1, k1 = heapq.heappop(queue) while queue: _, ssa_id2, k2 = heapq.heappop(queue) ssa_path.append((min(ssa_id1, ssa_id2), max(ssa_id1, ssa_id2))) k12 = (k1 | k2) & output cost = helpers.compute_size_by_dict(k12, sizes) ssa_id12 = next(ssa_ids) _, ssa_id1, k1 = heapq.heappushpop(queue, (cost, ssa_id12, k12)) return ssa_path
[docs]def greedy(inputs, output, size_dict, memory_limit=None, choose_fn=None, cost_fn='memory-removed'): """ Finds the path by a three stage algorithm: 1. Eagerly compute Hadamard products. 2. Greedily compute contractions to maximize ``removed_size`` 3. Greedily compute outer products. This algorithm scales quadratically with respect to the maximum number of elements sharing a common dim. Parameters ---------- inputs : list List of sets that represent the lhs side of the einsum subscript output : set Set that represents the rhs side of the overall einsum subscript size_dict : dictionary Dictionary of index sizes memory_limit : int The maximum number of elements in a temporary array choose_fn : callable, optional A function that chooses which contraction to perform from the queu cost_fn : callable, optional A function that assigns a potential contraction a cost. Returns ------- path : list The contraction order (a list of tuples of ints). Examples -------- >>> isets = [set('abd'), set('ac'), set('bdc')] >>> oset = set('') >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} >>> greedy(isets, oset, idx_sizes) [(0, 2), (0, 1)] """ if memory_limit not in _UNLIMITED_MEM: return branch(inputs, output, size_dict, memory_limit, nbranch=1, cost_fn=cost_fn) ssa_path = ssa_greedy_optimize(inputs, output, size_dict, cost_fn=cost_fn, choose_fn=choose_fn) return ssa_to_linear(ssa_path)
def _tree_to_sequence(c): """ Converts a contraction tree to a contraction path as it has to be returned by path optimizers. A contraction tree can either be an int (=no contraction) or a tuple containing the terms to be contracted. An arbitrary number (>= 1) of terms can be contracted at once. Note that contractions are commutative, e.g. (j, k, l) = (k, l, j). Note that in general, solutions are not unique. Parameters ---------- c : tuple or int Contraction tree Returns ------- path : list[set[int]] Contraction path Examples -------- >>> _tree_to_sequence(((1,2),(0,(4,5,3)))) [(1, 2), (1, 2, 3), (0, 2), (0, 1)] """ # ((1,2),(0,(4,5,3))) --> [(1, 2), (1, 2, 3), (0, 2), (0, 1)] # # 0 0 0 (1,2) --> ((1,2),(0,(3,4,5))) # 1 3 (1,2) --> (0,(3,4,5)) # 2 --> 4 --> (3,4,5) # 3 5 # 4 (1,2) # 5 # # this function iterates through the table shown above from right to left; if type(c) == int: return [] c = [c] # list of remaining contractions (lower part of columns shown above) t = [] # list of elementary tensors (upper part of colums) s = [] # resulting contraction sequence while len(c) > 0: j = c.pop(-1) s.insert(0, tuple()) for i in sorted([i for i in j if type(i) == int]): s[0] += (sum(1 for q in t if q < i), ) t.insert(s[0][-1], i) for i in [i for i in j if type(i) != int]: s[0] += (len(t) + len(c), ) c.append(i) return s def _find_disconnected_subgraphs(inputs, output): """ Finds disconnected subgraphs in the given list of inputs. Inputs are connected if they share summation indices. Note: Disconnected subgraphs can be contracted independently before forming outer products. Parameters ---------- inputs : list[set] List of sets that represent the lhs side of the einsum subscript output : set Set that represents the rhs side of the overall einsum subscript Returns ------- subgraphs : list[set[int]] List containing sets of indices for each subgraph Examples -------- >>> _find_disconnected_subgraphs([set("ab"), set("c"), set("ad")], set("bd")) [{0, 2}, {1}] >>> _find_disconnected_subgraphs([set("ab"), set("c"), set("ad")], set("abd")) [{0}, {1}, {2}] """ subgraphs = [] unused_inputs = set(range(len(inputs))) i_sum = set.union(*inputs) - output # all summation indices while len(unused_inputs) > 0: g = set() q = [unused_inputs.pop()] while len(q) > 0: j = q.pop() g.add(j) i_tmp = i_sum & inputs[j] n = {k for k in unused_inputs if len(i_tmp & inputs[k]) > 0} q.extend(n) unused_inputs.difference_update(n) subgraphs.append(g) return subgraphs def _bitmap_select(s, seq): """Select elements of ``seq`` which are marked by the bitmap set ``s``. E.g.: >>> list(_bitmap_select(0b11010, ['A', 'B', 'C', 'D', 'E'])) ['B', 'D', 'E'] """ return (x for x, b in zip(seq, bin(s)[:1:-1]) if b == '1') def _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2): """Calculates the effective outer indices of the intermediate tensor corresponding to the subgraph ``s``. """ # set of remaining tensors (=g-s) r = g & (all_tensors ^ s) # indices of remaining indices: if r: i_r = set.union(*_bitmap_select(r, inputs)) else: i_r = set() # contraction indices: i_contract = i1_cut_i2_wo_output - i_r return i1_union_i2 - i_contract def _dp_compare_flops(cost1, cost2, i1_union_i2, size_dict, cost_cap, s1, s2, xn, g, all_tensors, inputs, i1_cut_i2_wo_output, memory_limit, cntrct1, cntrct2): """Performs the inner comparison of whether the two subgraphs (the bitmaps ``s1`` and ``s2``) should be merged and added to the dynamic programming search. Will skip for a number of reasons: 1. If the number of operations to form ``s = s1 | s2`` including previous contractions is above the cost-cap. 2. If we've already found a better way of making ``s``. 3. If the intermediate tensor corresponding to ``s`` is going to break the memory limit. """ cost = cost1 + cost2 + helpers.compute_size_by_dict(i1_union_i2, size_dict) if cost <= cost_cap: s = s1 | s2 if s not in xn or cost < xn[s][1]: i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2) mem = helpers.compute_size_by_dict(i, size_dict) if memory_limit is None or mem <= memory_limit: xn[s] = (i, cost, (cntrct1, cntrct2)) def _dp_compare_size(cost1, cost2, i1_union_i2, size_dict, cost_cap, s1, s2, xn, g, all_tensors, inputs, i1_cut_i2_wo_output, memory_limit, cntrct1, cntrct2): """Like ``_dp_compare_flops`` but sieves the potential contraction based on the size of the intermediate tensor created, rather than the number of operations, and so calculates that first. """ s = s1 | s2 i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2) mem = helpers.compute_size_by_dict(i, size_dict) cost = max(cost1, cost2, mem) if cost <= cost_cap: if s not in xn or cost < xn[s][1]: if memory_limit is None or mem <= memory_limit: xn[s] = (i, cost, (cntrct1, cntrct2)) def simple_tree_tuple(seq): """Make a simple left to right binary tree out of iterable ``seq``. >>> tuple_nest([1, 2, 3, 4]) (((1, 2), 3), 4) """ return functools.reduce(lambda x, y: (x, y), seq) def _dp_parse_out_single_term_ops(inputs, all_inds, ind_counts): """Take ``inputs`` and parse for single term index operations, i.e. where an index appears on one tensor and nowhere else. If a term is completely reduced to a scalar in this way it can be removed to ``inputs_done``. If only some indices can be summed then add a 'single term contraction' that will perform this summation. """ i_single = {i for i, c in enumerate(all_inds) if ind_counts[c] == 1} inputs_parsed, inputs_done, inputs_contractions = [], [], [] for j, i in enumerate(inputs): i_reduced = i - i_single if not i_reduced: # input reduced to scalar already - remove inputs_done.append((j, )) else: # if the input has any index reductions, add single contraction inputs_parsed.append(i_reduced) inputs_contractions.append((j, ) if i_reduced != i else j) return inputs_parsed, inputs_done, inputs_contractions
[docs]class DynamicProgramming(PathOptimizer): """ Finds the optimal path of pairwise contractions without intermediate outer products based a dynamic programming approach presented in Phys. Rev. E 90, 033315 (2014) (the corresponding preprint is publically available at https://arxiv.org/abs/1304.6112). This method is especially well-suited in the area of tensor network states, where it usually outperforms all the other optimization strategies. This algorithm shows exponential scaling with the number of inputs in the worst case scenario (see example below). If the graph to be contracted consists of disconnected subgraphs, the algorithm scales linearly in the number of disconnected subgraphs and only exponentially with the number of inputs per subgraph. Parameters ---------- minimize : {'flops', 'size'}, optional Whether to find the contraction that minimizes the number of operations or the size of the largest intermediate tensor. cost_cap : {True, False, int}, optional How to implement cost-capping: * True - iteratively increase the cost-cap * False - implement no cost-cap at all * int - use explicit cost cap search_outer : bool, optional In rare circumstances the optimal contraction may involve an outer product, this option allows searching such contractions but may well slow down the path finding considerably on all but very small graphs. """
[docs] def __init__(self, minimize='flops', cost_cap=True, search_outer=False): # set whether inner function minimizes against flops or size self.minimize = minimize self._check_contraction = { 'flops': _dp_compare_flops, 'size': _dp_compare_size, }[self.minimize] # set whether inner function considers outer products self.search_outer = search_outer self._check_outer = { False: lambda x: x, True: lambda x: True, }[self.search_outer] self.cost_cap = cost_cap
def __call__(self, inputs, output, size_dict, memory_limit=None): """ Parameters ---------- inputs : list List of sets that represent the lhs side of the einsum subscript output : set Set that represents the rhs side of the overall einsum subscript size_dict : dictionary Dictionary of index sizes memory_limit : int The maximum number of elements in a temporary array Returns ------- path : list The contraction order (a list of tuples of ints). Examples -------- >>> n_in = 3 # exponential scaling >>> n_out = 2 # linear scaling >>> s = dict() >>> i_all = [] >>> for _ in range(n_out): >>> i = [set() for _ in range(n_in)] >>> for j in range(n_in): >>> for k in range(j+1, n_in): >>> c = oe.get_symbol(len(s)) >>> i[j].add(c) >>> i[k].add(c) >>> s[c] = 2 >>> i_all.extend(i) >>> o = DynamicProgramming() >>> o(i_all, set(), s) [(1, 2), (0, 4), (1, 2), (0, 2), (0, 1)] """ ind_counts = Counter(itertools.chain(*inputs, output)) all_inds = tuple(ind_counts) # convert all indices to integers (makes set operations ~10 % faster) symbol2int = {c: j for j, c in enumerate(all_inds)} inputs = [set(symbol2int[c] for c in i) for i in inputs] output = set(symbol2int[c] for c in output) size_dict = {symbol2int[c]: v for c, v in size_dict.items() if c in symbol2int} size_dict = [size_dict[j] for j in range(len(size_dict))] inputs, inputs_done, inputs_contractions = _dp_parse_out_single_term_ops(inputs, all_inds, ind_counts) if not inputs: # nothing left to do after single axis reductions! return _tree_to_sequence(simple_tree_tuple(inputs_done)) # a list of all neccessary contraction expressions for each of the # disconnected subgraphs and their size subgraph_contractions = inputs_done subgraph_contractions_size = [1] * len(inputs_done) if self.search_outer: # optimize everything together if we are considering outer products subgraphs = [set(range(len(inputs)))] else: subgraphs = _find_disconnected_subgraphs(inputs, output) # the bitmap set of all tensors is computed as it is needed to # compute set differences: s1 - s2 transforms into # s1 & (all_tensors ^ s2) all_tensors = (1 << len(inputs)) - 1 for g in subgraphs: # dynamic programming approach to compute x[n] for subgraph g; # x[n][set of n tensors] = (indices, cost, contraction) # the set of n tensors is represented by a bitmap: if bit j is 1, # tensor j is in the set, e.g. 0b100101 = {0,2,5}; set unions # (intersections) can then be computed by bitwise or (and); x = [None] * 2 + [dict() for j in range(len(g) - 1)] x[1] = OrderedDict((1 << j, (inputs[j], 0, inputs_contractions[j])) for j in g) # convert set of tensors g to a bitmap set: g = functools.reduce(lambda x, y: x | y, (1 << j for j in g)) # try to find contraction with cost <= cost_cap and increase # cost_cap successively if no such contraction is found; # this is a major performance improvement; start with product of # output index dimensions as initial cost_cap subgraph_inds = set.union(*_bitmap_select(g, inputs)) if self.cost_cap is True: cost_cap = helpers.compute_size_by_dict(subgraph_inds & output, size_dict) elif self.cost_cap is False: cost_cap = float('inf') else: cost_cap = self.cost_cap # set the factor to increase the cost by each iteration (ensure > 1) cost_increment = max(min(map(size_dict.__getitem__, subgraph_inds)), 2) while len(x[-1]) == 0: for n in range(2, len(x[1]) + 1): xn = x[n] # try to combine solutions from x[m] and x[n-m] for m in range(1, n // 2 + 1): for s1, (i1, cost1, cntrct1) in x[m].items(): for s2, (i2, cost2, cntrct2) in x[n - m].items(): # can only merge if s1 and s2 are disjoint # and avoid e.g. s1={0}, s2={1} and s1={1}, s2={0} if (not s1 & s2) and (m != n - m or s1 < s2): i1_cut_i2_wo_output = (i1 & i2) - output # maybe ignore outer products: if self._check_outer(i1_cut_i2_wo_output): i1_union_i2 = i1 | i2 self._check_contraction(cost1, cost2, i1_union_i2, size_dict, cost_cap, s1, s2, xn, g, all_tensors, inputs, i1_cut_i2_wo_output, memory_limit, cntrct1, cntrct2) # increase cost cap for next iteration: cost_cap = cost_increment * cost_cap i, cost, contraction = list(x[-1].values())[0] subgraph_contractions.append(contraction) subgraph_contractions_size.append(helpers.compute_size_by_dict(i, size_dict)) # sort the subgraph contractions by the size of the subgraphs in # ascending order (will give the cheapest contractions); note that # outer products should be performed pairwise (to use BLAS functions) subgraph_contractions = [ subgraph_contractions[j] for j in sorted(range(len(subgraph_contractions_size)), key=subgraph_contractions_size.__getitem__) ] # build the final contraction tree tree = simple_tree_tuple(subgraph_contractions) return _tree_to_sequence(tree)
def dynamic_programming(inputs, output, size_dict, memory_limit=None, **kwargs): optimizer = DynamicProgramming(**kwargs) return optimizer(inputs, output, size_dict, memory_limit) _AUTO_CHOICES = {} for i in range(1, 5): _AUTO_CHOICES[i] = optimal for i in range(5, 7): _AUTO_CHOICES[i] = branch_all for i in range(7, 9): _AUTO_CHOICES[i] = branch_2 for i in range(9, 15): _AUTO_CHOICES[i] = branch_1 def auto(inputs, output, size_dict, memory_limit=None): """Finds the contraction path by automatically choosing the method based on how many input arguments there are. """ N = len(inputs) return _AUTO_CHOICES.get(N, greedy)(inputs, output, size_dict, memory_limit) _AUTO_HQ_CHOICES = {} for i in range(1, 6): _AUTO_HQ_CHOICES[i] = optimal for i in range(6, 17): _AUTO_HQ_CHOICES[i] = dynamic_programming def auto_hq(inputs, output, size_dict, memory_limit=None): """Finds the contraction path by automatically choosing the method based on how many input arguments there are, but targeting a more generous amount of search time than ``'auto'``. """ from .path_random import random_greedy_128 N = len(inputs) return _AUTO_HQ_CHOICES.get(N, random_greedy_128)(inputs, output, size_dict, memory_limit) _PATH_OPTIONS = { 'auto': auto, 'auto-hq': auto_hq, 'optimal': optimal, 'branch-all': branch_all, 'branch-2': branch_2, 'branch-1': branch_1, 'greedy': greedy, 'eager': greedy, 'opportunistic': greedy, 'dp': dynamic_programming, 'dynamic-programming': dynamic_programming } def register_path_fn(name, fn): """Add path finding function ``fn`` as an option with ``name``. """ if name in _PATH_OPTIONS: raise KeyError("Path optimizer '{}' already exists.".format(name)) _PATH_OPTIONS[name.lower()] = fn def get_path_fn(path_type): """Get the correct path finding function from str ``path_type``. """ if path_type not in _PATH_OPTIONS: raise KeyError("Path optimizer '{}' not found, valid options are {}.".format( path_type, set(_PATH_OPTIONS.keys()))) return _PATH_OPTIONS[path_type]