Source code for opt_einsum.parser

#!/usr/bin/env python
# coding: utf-8
"""
A functionally equivalent parser of the numpy.einsum input parser
"""

import itertools
from collections import OrderedDict

import numpy as np

__all__ = [
    "is_valid_einsum_char", "has_valid_einsum_chars_only", "get_symbol", "gen_unused_symbols",
    "convert_to_valid_einsum_chars", "alpha_canonicalize", "find_output_str", "find_output_shape",
    "possibly_convert_to_numpy", "parse_einsum_input"
]

_einsum_symbols_base = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'


def is_valid_einsum_char(x):
    """Check if the character ``x`` is valid for numpy einsum.

    Examples
    --------
    >>> is_valid_einsum_char("a")
    True

    >>> is_valid_einsum_char("Ǵ")
    False
    """
    return (x in _einsum_symbols_base) or (x in ',->.')


def has_valid_einsum_chars_only(einsum_str):
    """Check if ``einsum_str`` contains only valid characters for numpy einsum.

    Examples
    --------
    >>> has_valid_einsum_chars_only("abAZ")
    True

    >>> has_valid_einsum_chars_only("Över")
    False
    """
    return all(map(is_valid_einsum_char, einsum_str))


[docs]def get_symbol(i): """Get the symbol corresponding to int ``i`` - runs through the usual 52 letters before resorting to unicode characters, starting at ``chr(192)``. Examples -------- >>> get_symbol(2) 'c' >>> get_symbol(200) 'Ŕ' >>> get_symbol(20000) '京' """ if i < 52: return _einsum_symbols_base[i] return chr(i + 140)
def gen_unused_symbols(used, n): """Generate ``n`` symbols that are not already in ``used``. Examples -------- >>> list(oe.parser.gen_unused_symbols("abd", 2)) ['c', 'e'] """ i = cnt = 0 while cnt < n: s = get_symbol(i) i += 1 if s in used: continue yield s cnt += 1 def convert_to_valid_einsum_chars(einsum_str): """Convert the str ``einsum_str`` to contain only the alphabetic characters valid for numpy einsum. If there are too many symbols, let the backend throw an error. Examples -------- >>> oe.parser.convert_to_valid_einsum_chars("Ĥěļļö") 'cbdda' """ symbols = sorted(set(einsum_str) - set(',->')) replacer = {x: get_symbol(i) for i, x in enumerate(symbols)} return "".join(replacer.get(x, x) for x in einsum_str) def alpha_canonicalize(equation): """Alpha convert an equation in an order-independent canonical way. Examples -------- >>> oe.parser.alpha_canonicalize("dcba") 'abcd' >>> oe.parser.alpha_canonicalize("Ĥěļļö") 'abccd' """ rename = OrderedDict() for name in equation: if name in '.,->': continue if name not in rename: rename[name] = get_symbol(len(rename)) return ''.join(rename.get(x, x) for x in equation) def find_output_str(subscripts): """ Find the output string for the inputs ``subscripts`` under canonical einstein summation rules. That is, repeated indices are summed over by default. Examples -------- >>> oe.parser.find_output_str("ab,bc") 'ac' >>> oe.parser.find_output_str("a,b") 'ab' >>> oe.parser.find_output_str("a,a,b,b") '' """ tmp_subscripts = subscripts.replace(",", "") return "".join(s for s in sorted(set(tmp_subscripts)) if tmp_subscripts.count(s) == 1) def find_output_shape(inputs, shapes, output): """Find the output shape for given inputs, shapes and output string, taking into account broadcasting. Examples -------- >>> oe.parser.find_output_shape(["ab", "bc"], [(2, 3), (3, 4)], "ac") (2, 4) # Broadcasting is accounted for >>> oe.parser.find_output_shape(["a", "a"], [(4, ), (1, )], "a") (4,) """ return tuple( max(shape[loc] for shape, loc in zip(shapes, [x.find(c) for x in inputs]) if loc >= 0) for c in output) def possibly_convert_to_numpy(x): """Convert things without a 'shape' to ndarrays, but leave everything else. Examples -------- >>> oe.parser.possibly_convert_to_numpy(5) array(5) >>> oe.parser.possibly_convert_to_numpy([5, 3]) array([5, 3]) >>> oe.parser.possibly_convert_to_numpy(np.array([5, 3])) array([5, 3]) # Any class with a shape is passed through >>> class Shape: ... def __init__(self, shape): ... self.shape = shape ... >>> myshape = Shape((5, 5)) >>> oe.parser.possibly_convert_to_numpy(myshape) <__main__.Shape object at 0x10f850710> """ if not hasattr(x, 'shape'): return np.asanyarray(x) else: return x def convert_subscripts(old_sub, symbol_map): """Convert user custom subscripts list to subscript string according to `symbol_map`. Examples -------- >>> oe.parser.convert_subscripts(['abc', 'def'], {'abc':'a', 'def':'b'}) 'ab' >>> oe.parser.convert_subscripts([Ellipsis, object], {object:'a'}) '...a' """ new_sub = "" for s in old_sub: if s is Ellipsis: new_sub += "..." else: # no need to try/except here because symbol_map has already been checked new_sub += symbol_map[s] return new_sub def convert_interleaved_input(operands): """Convert 'interleaved' input to standard einsum input. """ tmp_operands = list(operands) operand_list = [] subscript_list = [] for p in range(len(operands) // 2): operand_list.append(tmp_operands.pop(0)) subscript_list.append(tmp_operands.pop(0)) output_list = tmp_operands[-1] if len(tmp_operands) else None operands = [possibly_convert_to_numpy(x) for x in operand_list] # build a map from user symbols to single-character symbols based on `get_symbol` # The map retains the intrinsic order of user symbols try: # collect all user symbols symbol_set = set(itertools.chain.from_iterable(subscript_list)) # remove Ellipsis because it can not be compared with other objects symbol_set.discard(Ellipsis) # build the map based on sorted user symbols, retaining the order we lost in the `set` symbol_map = {symbol: get_symbol(idx) for idx, symbol in enumerate(sorted(symbol_set))} except TypeError: # unhashable or uncomparable object raise TypeError("For this input type lists must contain either Ellipsis " "or hashable and comparable object (e.g. int, str).") subscripts = ','.join(convert_subscripts(sub, symbol_map) for sub in subscript_list) if output_list is not None: subscripts += "->" subscripts += convert_subscripts(output_list, symbol_map) return subscripts, operands def parse_einsum_input(operands): """ A reproduction of einsum c side einsum parsing in python. Returns ------- input_strings : str Parsed input strings output_string : str Parsed output string operands : list of array_like The operands to use in the numpy contraction Examples -------- The operand list is simplified to reduce printing: >>> a = np.random.rand(4, 4) >>> b = np.random.rand(4, 4, 4) >>> parse_einsum_input(('...a,...a->...', a, b)) ('za,xza', 'xz', [a, b]) >>> parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) ('za,xza', 'xz', [a, b]) """ if len(operands) == 0: raise ValueError("No input operands") if isinstance(operands[0], str): subscripts = operands[0].replace(" ", "") operands = [possibly_convert_to_numpy(x) for x in operands[1:]] else: subscripts, operands = convert_interleaved_input(operands) # Check for proper "->" if ("-" in subscripts) or (">" in subscripts): invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) if invalid or (subscripts.count("->") != 1): raise ValueError("Subscripts can only contain one '->'.") # Parse ellipses if "." in subscripts: used = subscripts.replace(".", "").replace(",", "").replace("->", "") ellipse_inds = "".join(gen_unused_symbols(used, max(len(x.shape) for x in operands))) longest = 0 # Do we have an output to account for? if "->" in subscripts: input_tmp, output_sub = subscripts.split("->") split_subscripts = input_tmp.split(",") out_sub = True else: split_subscripts = subscripts.split(',') out_sub = False for num, sub in enumerate(split_subscripts): if "." in sub: if (sub.count(".") != 3) or (sub.count("...") != 1): raise ValueError("Invalid Ellipses.") # Take into account numerical values if operands[num].shape == (): ellipse_count = 0 else: ellipse_count = max(len(operands[num].shape), 1) - (len(sub) - 3) if ellipse_count > longest: longest = ellipse_count if ellipse_count < 0: raise ValueError("Ellipses lengths do not match.") elif ellipse_count == 0: split_subscripts[num] = sub.replace('...', '') else: split_subscripts[num] = sub.replace('...', ellipse_inds[-ellipse_count:]) subscripts = ",".join(split_subscripts) # Figure out output ellipses if longest == 0: out_ellipse = "" else: out_ellipse = ellipse_inds[-longest:] if out_sub: subscripts += "->" + output_sub.replace("...", out_ellipse) else: # Special care for outputless ellipses output_subscript = find_output_str(subscripts) normal_inds = ''.join(sorted(set(output_subscript) - set(out_ellipse))) subscripts += "->" + out_ellipse + normal_inds # Build output string if does not exist if "->" in subscripts: input_subscripts, output_subscript = subscripts.split("->") else: input_subscripts, output_subscript = subscripts, find_output_str(subscripts) # Make sure output subscripts are in the input for char in output_subscript: if char not in input_subscripts: raise ValueError("Output character '{}' did not appear in the input".format(char)) # Make sure number operands is equivalent to the number of terms if len(input_subscripts.split(',')) != len(operands): raise ValueError("Number of einsum subscripts must be equal to the " "number of operands.") return input_subscripts, output_subscript, operands