

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

API Documentation

opt_einsum.contract

::: opt_einsum.contract
:docstring:

opt_einsum.contract_path

::: opt_einsum.contract_path
:docstring:

opt_einsum.contract_expression

::: opt_einsum.contract_expression
:docstring:
:members:

opt_einsum.contract.ContractExpression

::: opt_einsum.contract.ContractExpression
:docstring:
:members:

opt_einsum.contract.PathInfo

::: opt_einsum.contract.PathInfo
:docstring:

opt_einsum.get_symbol

::: opt_einsum.get_symbol
:docstring:

opt_einsum.shared_intermediates

::: opt_einsum.shared_intermediates
:docstring:

opt_einsum.paths.optimal

::: opt_einsum.paths.optimal
:docstring:

opt_einsum.paths.greedy

::: opt_einsum.paths.greedy
:docstring:

opt_einsum.paths.branch

::: opt_einsum.paths.branch
:docstring:

opt_einsum.paths.PathOptimizer

::: opt_einsum.paths.PathOptimizer
:docstring:
:members:

opt_einsum.paths.BranchBound

::: opt_einsum.paths.BranchBound
:docstring:
:members:

opt_einsum.path_random.RandomOptimizer

::: opt_einsum.path_random.RandomOptimizer
:docstring:
:members:

opt_einsum.path_random.RandomGreedy

::: opt_einsum.path_random.RandomGreedy
:docstring:
:members:

opt_einsum.paths.DynamicProgramming

::: opt_einsum.paths.DynamicProgramming
:docstring:
:members:

Changelog

3.3.0 / 2020-07-19

Adds a object backend for optimized contractions on arbitrary Python objects.

New Features

	#145 [https://github.com/dgasmith/opt_einsum/pull/145] Adds a object based backend so that contract(backend='object') can be used on arbitrary objects such as SymPy symbols.

Enhancements

	#140 [https://github.com/dgasmith/opt_einsum/pull/140] Better error messages when the requested contract backend cannot be found.

	#141 [https://github.com/dgasmith/opt_einsum/pull/141] Adds a check with RandomOptimizers to ensure the objects are not accidentally reused for different contractions.

	#149 [https://github.com/dgasmith/opt_einsum/pull/149] Limits the remaining category for the contract_path output to only show up to 20 tensors to prevent issues with the quadratically scaling memory requirements and the number of print lines for large contractions.

3.2.0 / 2020-03-01

Small fixes for the dp path and support for a new mars backend.

New Features

	#109 [https://github.com/dgasmith/opt_einsum/pull/109] Adds mars backend support.

Enhancements

	#110 [https://github.com/dgasmith/opt_einsum/pull/110] New auto-hq and 'random-greedy-128' paths.

	#119 [https://github.com/dgasmith/opt_einsum/pull/119] Fixes several edge cases in the dp path.

Bug fixes

	#127 [https://github.com/dgasmith/opt_einsum/pull/127] Fixes an issue where Python 3.6 features are required while Python 3.5 is opt_einsum’s stated minimum version.

3.1.0 / 2019-09-30

Adds a new dynamic programming algorithm to the suite of paths.

New Features

	#102 [https://github.com/dgasmith/opt_einsum/pull/102] Adds new dp path.

3.0.0 / 2019-08-10

This release moves opt_einsum to be backend agnostic while adding support
additional backends such as Jax and Autograd. Support for Python 2.7 has been dropped and Python 3.5 will become the new minimum version, a Python deprecation policy equivalent to NumPy’s has been adopted.

New Features

	#78 [https://github.com/dgasmith/opt_einsum/pull/78] A new random-optimizer has been implemented which uses Boltzmann weighting to explore alternative near-minimum paths using greedy-like schemes. This provides a fairly large path performance enhancements with a linear path time overhead.

	#78 [https://github.com/dgasmith/opt_einsum/pull/78] A new PathOptimizer class has been implemented to provide a framework for building new optimizers. An example is that now custom cost functions can now be provided in the greedy formalism for building custom optimizers without a large amount of additional code.

	#81 [https://github.com/dgasmith/opt_einsum/pull/81] The backend="auto" keyword has been implemented for contract allowing automatic detection of the correct backend to use based off provided tensors in the contraction.

	#88 [https://github.com/dgasmith/opt_einsum/pull/88] Autograd and Jax support have been implemented.

	#96 [https://github.com/dgasmith/opt_einsum/pull/96] Deprecates Python 2 functionality and devops improvements.

Enhancements

	#84 [https://github.com/dgasmith/opt_einsum/pull/84] The contract_path function can now accept shape tuples rather than full tensors.

	#84 [https://github.com/dgasmith/opt_einsum/pull/84] The contract_path automated path algorithm decision technology has been refactored to a standalone function.

2.3.0 / 2018-12-01

This release primarily focuses on expanding the suite of available path
technologies to provide better optimization characistics for 4-20 tensors while
decreasing the time to find paths for 50-200+ tensors. See Path Overview <path_finding.html#performance-comparison>_ for more information.

New Features

	#60 [https://github.com/dgasmith/opt_einsum/pull/60] A new greedy implementation has been added which is up to two orders of magnitude faster for 200 tensors.

	#73 [https://github.com/dgasmith/opt_einsum/pull/73] Adds a new branch path that uses greedy ideas to prune the optimal exploration space to provide a better path than greedy at sub optimal cost.

	#73 [https://github.com/dgasmith/opt_einsum/pull/73] Adds a new auto keyword to the opt_einsum.contract path option. This keyword automatically chooses the best path technology that takes under 1ms to execute.

Enhancements

	#61 [https://github.com/dgasmith/opt_einsum/pull/61] The opt_einsum.contract path keyword has been changed to optimize to more closely match NumPy. path will be deprecated in the future.

	#61 [https://github.com/dgasmith/opt_einsum/pull/61] The opt_einsum.contract_path now returns a opt_einsum.contract.PathInfo object that can be queried for the scaling, flops, and intermediates of the path. The print representation of this object is identical to before.

	#61 [https://github.com/dgasmith/opt_einsum/pull/61] The default memory_limit is now unlimited by default based on community feedback.

	#66 [https://github.com/dgasmith/opt_einsum/pull/66] The Torch backend will now use tensordot when using a version of Torch which includes this functionality.

	#68 [https://github.com/dgasmith/opt_einsum/pull/68] Indices can now be any hashable object when provided in the "Interleaved Input" <input_format.html#interleaved-input>_ syntax.

	#74 [https://github.com/dgasmith/opt_einsum/pull/74] Allows the default transpose operation to be overridden to take advantage of more advanced tensor transpose libraries.

	#73 [https://github.com/dgasmith/opt_einsum/pull/73] The optimal path is now significantly faster.

	#81 [https://github.com/dgasmith/opt_einsum/pull/81] A documentation pass for v3.0.

Bug fixes

	#72 [https://github.com/dgasmith/opt_einsum/pull/72] Fixes the "Interleaved Input" <input_format.html#interleaved-input>_ syntax and adds documentation.

2.2.0 / 2018-07-29

New Features

	#48 [https://github.com/dgasmith/opt_einsum/pull/48] Intermediates can now be shared between contractions, see here for more details.

	#53 [https://github.com/dgasmith/opt_einsum/pull/53] Intermediate caching is thread safe.

Enhancements

	#48 [https://github.com/dgasmith/opt_einsum/pull/48] Expressions are now mapped to non-unicode index set so that unicode input is support for all backends.

	#54 [https://github.com/dgasmith/opt_einsum/pull/54] General documentation update.

Bug fixes

	#41 [https://github.com/dgasmith/opt_einsum/pull/41] PyTorch indices are mapped back to a small a-z subset valid for PyTorch’s einsum implementation.

2.1.3 / 2018-8-23

Bug fixes

	Fixes unicode issue for large numbers of tensors in Python 2.7.

	Fixes unicode install bug in README.md.

2.1.2 / 2018-8-16

Bug fixes

	Ensures versioneer.py is in MANIFEST.in for a clean pip install.

2.1.1 / 2018-8-15

Bug fixes

	Corrected Markdown display on PyPi.

2.1.0 / 2018-8-15

opt_einsum continues to improve its support for additional backends beyond NumPy with PyTorch.

We have also published the opt_einsum package in the Journal of Open Source Software. If you use this package in your work, please consider citing us!

New features

	PyTorch backend support

	Tensorflow eager-mode execution backend support

Enhancements

	Intermediate tensordot-like expressions are now ordered to avoid transposes.

	CI now uses conda backend to better support GPU and tensor libraries.

	Now accepts arbitrary unicode indices rather than a subset.

	New auto path option which switches between optimal and greedy at four tensors.

Bug fixes

	Fixed issue where broadcast indices were incorrectly locked out of tensordot-like evaluations even after their dimension was broadcast.

2.0.1 / 2018-6-28

New Features

	Allows unlimited Unicode indices.

	Adds a Journal of Open-Source Software paper.

	Minor documentation improvements.

2.0.0 / 2018-5-17

opt_einsum is a powerful tensor contraction order optimizer for NumPy and related ecosystems.

New Features

	Expressions can be precompiled so that the expression optimization need not happen multiple times.

	The greedy order optimization algorithm has been tuned to be able to handle hundreds of tensors in several seconds.

	Input indices can now be unicode so that expressions can have many thousands of indices.

	GPU and distributed computing backends have been added such as Dask, TensorFlow, CUPy, Theano, and Sparse.

Bug Fixes

	An error affecting cases where opt_einsum mistook broadcasting operations for matrix multiply has been fixed.

	Most error messages are now more expressive.

1.0.0 / 2016-10-14

Einsum is a very powerful function for contracting tensors of arbitrary
dimension and index. However, it is only optimized to contract two terms at a
time resulting in non-optimal scaling for contractions with many terms.
Opt_einsum aims to fix this by optimizing the contraction order which can lead
to arbitrarily large speed ups at the cost of additional intermediate tensors.

Opt_einsum is also implemented into the np.einsum function as of NumPy v1.12.

New Features

	Tensor contraction order optimizer.

	opt_einsum.contract as a drop-in replacement for numpy.einsum.

Reusing Intermediaries with Dask

Dask [https://dask.pydata.org/] provides a computational framework where arrays and the computations on them are built up into a ‘task graph’ before computation.
Since :mod:opt_einsum is compatible with dask arrays this means that multiple contractions can be built into the same task graph, which then automatically reuses any shared arrays and contractions.

For example, imagine the two expressions:

contraction1 = 'ab,dca,eb,cde'
contraction2 = 'ab,cda,eb,cde'
sizes = {l: 10 for l in 'abcde'}

The contraction 'ab,eb' is shared between them and could only be done once.
First, let’s set up some numpy arrays:

terms1, terms2 = contraction1.split(','), contraction2.split(',')
terms = set((*terms1, *terms2))
terms
#> {'ab', 'cda', 'cde', 'dca', 'eb'}

import numpy as np
np_arrays = {s: np.random.randn(*(sizes[c] for c in s)) for s in terms}
filter the arrays needed for each expression
np_ops1 = [np_arrays[s] for s in terms1]
np_ops2 = [np_arrays[s] for s in terms2]

Typically we would compute these expressions separately:

oe.contract(contraction1, *np_ops1)
#> array(114.78314052)

oe.contract(contraction2, *np_ops2)
#> array(-75.55902751)

However, if we use dask arrays we can combine the two operations, so let’s set those up:

import dask.array as da
da_arrays = {s: da.from_array(np_arrays[s], chunks=1000, name=s) for s in inputs}
da_arrays
#> {'ab': dask.array<ab, shape=(10, 10), dtype=float64, chunksize=(10, 10)>,
#> 'cda': dask.array<cda, shape=(10, 10, 10), dtype=float64, chunksize=(10, 10, 10)>,
#> 'cde': dask.array<cde, shape=(10, 10, 10), dtype=float64, chunksize=(10, 10, 10)>,
#> 'dca': dask.array<dca, shape=(10, 10, 10), dtype=float64, chunksize=(10, 10, 10)>,
#> 'eb': dask.array<eb, shape=(10, 10), dtype=float64, chunksize=(10, 10)>}

da_ops1 = [da_arrays[s] for s in terms1]
da_ops2 = [da_arrays[s] for s in terms2]

Note chunks is a required argument relating to how the arrays are stored (see array-creation [http://dask.pydata.org/en/latest/array-creation.html]).
Now we can perform the contraction:

these won't be immediately evaluated
dy1 = oe.contract(contraction1, *da_ops1, backend='dask')
dy2 = oe.contract(contraction2, *da_ops2, backend='dask')

wrap them in delayed to combine them into the same computation
from dask import delayed
dy = delayed([dy1, dy2])
dy
#> Delayed('list-3af82335-b75e-47d6-b800-68490fc865fd')

As suggested by the name Delayed, we have a placeholder for the result
so far. When we want to perform the computation we can call:

dy.compute()
#> [114.78314052155015, -75.55902750513113]

The above matches the canonical numpy result. The computation can even be handled by various
schedulers - see scheduling [http://dask.pydata.org/en/latest/scheduling.html].
Finally, to check we are reusing intermediaries, we can view the task graph generated for the computation:

dy.visualize(optimize_graph=True)

[image: ../_images/ex_dask_reuse_graph.png]Dask Reuse Graph

!!! note
For sharing intermediates with other backends see Sharing Intermediates. Dask graphs are particularly useful for reusing intermediates beyond just contractions and can allow additional parallelization.

Large Expressions with Greedy

Using the greedy method allows the contraction of hundreds of tensors. Here’s
an example from quantum of computing the inner product between two ‘Matrix
Product States’ [https://en.wikipedia.org/wiki/Matrix_product_state].
Graphically, if we represent each tensor as an O, give it
the same number of ‘legs’ as it has indices, and join those legs when that
index is summed with another tensor, we get an expression for n particles
that looks like:

O-O-O-O-O-O- -O-O-O-O-O-O
| | | | | | ... | | | | | |
O-O-O-O-O-O- -O-O-O-O-O-O

0 1 2 3 4 5 n-2 n-1

The meaning of this is not that important other than its a large, useful
contraction. For n=100 it involves 200 different tensors and about 300
unique indices. With this many indices it can be useful to generate them with
the function opt_einsum.parser.get_symbol.

Setup the string

import numpy as np
import opt_einsum as oe

n = 100
phys_dim = 3
bond_dim = 10

start with first site
O--
|
O--
einsum_str = "ab,ac,"

for i in range(1, n - 1):
 # set the upper left/right, middle and lower left/right indices
 # --O--
 # |
 # --O--
 j = 3 * i
 ul, ur, m, ll, lr = (oe.get_symbol(i)
 for i in (j - 1, j + 2, j, j - 2, j + 1))
 einsum_str += "{}{}{},{}{}{},".format(m, ul, ur, m, ll, lr)

finish with last site
--O
|
--O
i = n - 1
j = 3 * i
ul, m, ll, = (oe.get_symbol(i) for i in (j - 1, j, j - 2))
einsum_str += "{}{},{}{}".format(m, ul, m, ll)

Generate the shapes

def gen_shapes():
 yield (phys_dim, bond_dim)
 yield (phys_dim, bond_dim)
 for i in range(1, n - 1):
 yield(phys_dim, bond_dim, bond_dim)
 yield(phys_dim, bond_dim, bond_dim)
 yield (phys_dim, bond_dim)
 yield (phys_dim, bond_dim)

shapes = tuple(gen_shapes())

Let’s time how long it takes to generate the expression ('greedy' is used by default, and we turn off the memory_limit):

%timeit expr = oe.contract_expression(einsum_str, *shapes, memory_limit=-1)
#> 76.2 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

This is pretty manageable, though we might want to think about splitting the
expression up if we go a lot bigger.
Importantly, we can then use this repeatedly with any set of matching arrays:

arrays = [np.random.randn(*shp) / 4 for shp in shapes]
expr(*arrays)
#> array(23.23628116)

arrays = [np.random.randn(*shp) / 4 for shp in shapes]
expr(*arrays)
#> array(-12.21091879)

Full path

And if we really want we can generate the full contraction path info:

print(oe.contract_path(einsum_str, *arrays, memory_limit=-1)[1])
#> Complete contraction: ab,ac,dcf,dbe,gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ->
#> Naive scaling: 298
#> Optimized scaling: 5
#> Naive FLOP count: 1.031e+248
#> Optimized FLOP count: 1.168e+06
#> Theoretical speedup: 88264689284468460017580864156865782413140936705854966013600065426858041248009637246968036807489558012989638169986640870276510490846199301907401763236976204166215471281505344088317454144870323271826022036197984172898402324699098341524952317952.000
#> Largest intermediate: 3.000e+02 elements
#> --
#> scaling BLAS current remaining
#> --
#> 4 TDOT dbe,ab->ade ac,dcf,gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ,ade->
#> 4 TDOT dcf,ac->adf gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ,ade,adf->
#> 4 GEMM ƶƵ,ƳƲƵ->ƳƶƲ gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƱƴ,ƶƴ,ade,adf,ƳƶƲ->
#> 4 GEMM ƶƴ,ƳƱƴ->ƳƶƱ gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ade,adf,ƳƶƲ,ƳƶƱ->
#> 5 TDOT ade,geh->adgh gfi,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,adf,ƳƶƲ,ƳƶƱ,adgh->
#>
#> ...
#>
#> 4 TDOT Ğğ,ĠğĢ->ĠĞĢ ĠĞġ,ģĢĥ,ģġĤ,Ĥĥ,ĠĞĢ->
#> 4 GEMM ĠĞĢ,ĠĞġ->ġĢ ģĢĥ,ģġĤ,Ĥĥ,ġĢ->
#> 4 GEMM Ĥĥ,ģĢĥ->ģĢĤ ģġĤ,ġĢ,ģĢĤ->
#> 4 TDOT ģĢĤ,ģġĤ->ġĢ ġĢ,ġĢ->
#> 2 DOT ġĢ,ġĢ-> ->

Where we can see the speedup over a naive einsum is about 10^241, not bad!

Backends & GPU Support

opt_einsum is largely agnostic to the type of n-dimensional arrays (tensors)
it uses, since finding the contraction path only relies on getting the shape
attribute of each array supplied.
It can perform the underlying tensor contractions with various
libraries. In fact, any library that provides a numpy.tensordot and
numpy.transpose implementation can perform most normal contractions.
However, certain special functionalities such as axes reduction are reliant on a
numpy.einsum implementation.
The following is a brief overview of libraries which have been tested with
opt_einsum:

	tensorflow [https://www.tensorflow.org/]: compiled tensor expressions
that can run on GPU.

	theano [http://deeplearning.net/software/theano/]: compiled tensor
expressions that can run on GPU.

	cupy [https://cupy.chainer.org/]: numpy-like api for GPU tensors.

	dask [https://dask.pydata.org/]: larger-than-memory tensor
computations, distributed scheduling, and potential reuse of
intermediaries.

	sparse [https://sparse.pydata.org/]: sparse tensors.

	pytorch [https://pytorch.org]: numpy-like api for GPU tensors.

	autograd [https://github.com/HIPS/autograd]: automatic derivative
computation for tensor expressions

	jax [https://github.com/google/jax]: compiled GPU tensor expressions
including autograd-like functionality

!!! note
For a contraction to be possible without using a backend einsum, it must
satisfy the following rule: in the full expression (including output
indices) each index must appear twice. In other words, each dimension
must be either contracted with one other dimension or left alone.

Backend agnostic contractions

The automatic backend detection will be detected based on the first supplied
array (default), this can be overridden by specifying the correct backend
argument for the type of arrays supplied when calling
opt_einsum.contract. For example, if you had a library installed
called 'foo' which provided an numpy.ndarray like object with a
.shape attribute as well as foo.tensordot and foo.transpose then
you could contract them with something like:

contract(einsum_str, *foo_arrays, backend='foo')

Behind the scenes opt_einsum will find the contraction path, perform
pairwise contractions using e.g. foo.tensordot and finally return the canonical
type those functions return.

Dask

dask [https://dask.pydata.org/] is an example of a library which satisfies
these requirements. For example:

import opt_einsum as oe
import dask.array as da
shapes = (3, 200), (200, 300), (300, 4)
dxs = [da.random.normal(0, 1, shp, chunks=(100, 100)) for shp in shapes]
dxs
#> [dask.array<da.random.normal, shape=(3, 200), dtype=float64, chunksize=(3, 100)>,
#> dask.array<da.random.normal, shape=(200, 300), dtype=float64, chunksize=(100, 100)>,
#> dask.array<da.random.normal, shape=(300, 4), dtype=float64, chunksize=(100, 4)>]

dy = oe.contract("ab,bc,cd", *dxs) # will infer backend='dask'
dy
#> dask.array<transpose, shape=(3, 4), dtype=float64, chunksize=(3, 4)>

dy.compute()
#> array([[470.71404665, 2.44931372, -28.47577265, 424.37716615],
#> [64.38328345, -287.40753131, 144.46515642, 324.88169821],
#> [-142.07153553, -180.41739259, 125.0973783 , -239.16754541]])

In this case, dask arrays in = dask array out, since dask arrays have a shape
attribute, and opt_einsum can find dask.array.tensordot and
dask.array.transpose.

Sparse

The sparse [https://sparse.pydata.org/] library also fits the requirements and is
supported. An example:

import sparse as sp
shapes = (3, 200), (200, 300), (300, 4)
sxs = [sp.random(shp) for shp in shapes]
sxs
#> [<COO: shape=(3, 200), dtype=float64, nnz=6, sorted=False, duplicates=True>,
#> <COO: shape=(200, 300), dtype=float64, nnz=600, sorted=False, duplicates=True>,
#> <COO: shape=(300, 4), dtype=float64, nnz=12, sorted=False, duplicates=True>]

oe.contract("ab,bc,cd", *sxs)
#> <COO: shape=(3, 4), dtype=float64, nnz=0, sorted=False, duplicates=False>

Autograd

The autograd [https://github.com/HIPS/autograd] library is a drop-in for
numpy that can automatically compute the gradients of array expressions.
opt_einsum automatically dispatches the autograd arrays correctly,
enabling a simple way to compute gradients of tensor contractions:

import numpy as np
import autograd
shapes = [(2, 3), (3, 4), (4, 2)]
x, y, z = [np.random.rand(*s) for s in shapes]

make single arg function as autograd takes derivative of first arg
def foo(xyz):
 return oe.contract('ij,jk,ki->', *xyz)

foo([x, y, z])
#> array(4.90422159)

wrap foo with autograd to compute gradients instead
dfoo = autograd.grad(foo)
dx, dy, dz = dfoo(arrays)
dx, dy, dz
#> (array([[1.10056194, 1.25078356, 1.48211494],
#> [1.38945961, 1.5572077 , 1.65234003]]),
#> array([[0.41710717, 0.63202881, 0.84573502, 0.95069975],
#> [0.42706777, 0.73630994, 0.99328938, 0.77415267],
#> [0.40773334, 0.61693475, 0.82545726, 0.93132302]]),
#> array([[0.78747828, 1.28979012],
#> [1.26051133, 1.48835538],
#> [0.46896666, 0.55003072],
#> [1.10840828, 1.16722494]]))

Jax

jax [https://github.com/google/jax] is itself a drop-in for autograd,
that additionally uses XLA [https://www.tensorflow.org/xla] to compile the
expressions, particularly for the GPU. Using it with opt_einsum is very
simple:

import jax
generate a compiled version of the above function
jit_foo = jax.jit(foo)
jit_foo([x, y, z])
#> DeviceArray(4.9042215, dtype=float32)

generate a compiled version of the gradient function
jit_dfoo = jax.jit(jax.grad(foo))
jit_dfoo([x, y, z])
#> [DeviceArray([[1.10056198, 1.25078356, 1.48211491],
#> [1.38945973, 1.5572077, 1.65234005]], dtype=float32),
#> DeviceArray([[0.41710716, 0.63202882, 0.84573501, 0.95069975],
#> [0.42706776, 0.73630995, 0.99328935, 0.7741527],
#> [0.40773335, 0.61693472, 0.82545722, 0.93132305]],
#> dtype=float32),
#> DeviceArray([[0.78747827, 1.28979015],
#> [1.2605114 , 1.4883554],
#> [0.46896666, 0.55003077],
#> [1.10840821, 1.16722488]], dtype=float32)]

!!! note
jax defaults to converting all arrays to single precision. This
behaviour can be changed by running
from jax.config import config; config.update("jax_enable_x64", True)
before it has been imported and used at all.

Special (GPU) backends for numpy arrays

A particular case is if numpy arrays are required for the input and output,
however, a more performant backend is required such as performing the contraction on a GPU.
Unless the specified backend works on numpy arrays, this requires converting to and from the backend array type.
Currently opt_einsum can handle this automatically for:

	tensorflow [https://www.tensorflow.org/]

	theano [http://deeplearning.net/software/theano/]

	cupy [https://cupy.chainer.org/]

	pytorch [https://pytorch.org]

	jax [https://github.com/google/jax]

all of which offer GPU support. Since tensorflow and theano both require
compiling the expression, this functionality is encapsulated in generating a
opt_einsum.ContractExpression using
opt_einsum.contract_expression, which can then be called using numpy
arrays whilst specifying backend='tensorflow' etc.
Additionally, if arrays are marked as constant
(see constants-section), then these arrays will be kept on the device
for optimal performance.

Theano

If theano is installed, using it as backend is as simple as specifying
backend='theano':

shapes = (3, 200), (200, 300), (300, 4)
expr = oe.contract_expression("ab,bc,cd", *shapes)
expr
#> <ContractExpression('ab,bc,cd')>

import numpy as np
GPU advantage mainly for low precision numbers
xs = [np.random.randn(*shp).astype(np.float32) for shp in shapes]
expr(*xs, backend='theano') # might see some fluff on first run
#> array([[129.28352 , -128.00702 , -164.62917 , -335.11682],
#> [-462.52344 , -121.12657 , -67.847626 , 624.5457],
#> [5.2838974, 36.441578 , 81.62851 , 703.1576]],
#> dtype=float32)

Note that you can still supply theano.tensor.TensorType directly to
opt_einsum (with backend='theano'), and it will return the
relevant theano type.

Tensorflow

To run the expression with tensorflow, you need to register a default
session:

import tensorflow as tf
sess = tf.Session()

with sess.as_default():
 out = expr(*xs, backend='tensorflow')

out
#> array([[129.28357 , -128.00684 , -164.62903 , -335.1167],
#> [-462.52362 , -121.12659 , -67.84769 , 624.5455],
#> [5.2839584, 36.44155 , 81.62852 , 703.15784]],
#> dtype=float32)

Note that you can still supply this expression with, for example, a
tensorflow.placeholder using backend='tensorflow', and then no
conversion would take place, instead you’d get a tensorflow.Tensor back.

Version 1.9 of tensorflow also added support for eager execution of
computations. If compilation of the contraction expression tensorflow graph is
taking a substantial amount of time up then it can be advantageous to use this,
especially since tensor contractions are quite compute-bound. This is achieved
by running the following snippet:

import tensorflow as tf
tf.enable_eager_execution()

After which opt_einsum will automatically detect eager mode if
backend='tensorflow' is supplied to a
opt_einsum.ContractExpression.

Pytorch & Cupy

Both pytorch [https://pytorch.org] and cupy [https://cupy.chainer.org/]
offer numpy-like, GPU-enabled arrays which execute eagerly rather than
requiring any compilation. If they are installed, no steps are required to
utilize them other than specifying the backend keyword:

expr(*xs, backend='torch')
#> array([[129.28357 , -128.00684 , -164.62903 , -335.1167],
#> [-462.52362 , -121.12659 , -67.84769 , 624.5455],
#> [5.2839584, 36.44155 , 81.62852 , 703.15784]],
#> dtype=float32)

expr(*xs, backend='cupy')
#> array([[129.28357 , -128.00684 , -164.62903 , -335.1167],
#> [-462.52362 , -121.12659 , -67.84769 , 624.5455],
#> [5.2839584, 36.44155 , 81.62852 , 703.15784]],
#> dtype=float32)

And as with the other GPU backends, if raw cupy or pytorch arrays are
supplied the returned array will be of the same type, with no conversion
to or from numpy arrays.

Jax

jax [https://github.com/google/jax], as introduced above, can compile tensor
functions, in doing so often achieving better performance.
opt_einsum expressions can handle this behind the scenes,
so again just the backend keyword needs to be supplied:

expr(*xs, backend='jax')
#> array([[129.28357 , -128.00684 , -164.62903 , -335.1167],
#> [-462.52362 , -121.12659 , -67.84769 , 624.5455],
#> [5.2839584, 36.44155 , 81.62852 , 703.15784]],
#> dtype=float32)

Contracting arbitrary objects

There is one more explicit backend that can handle arbitrary arrays of objects,
so long the objects themselves just support multiplication and addition (
__mul__ and __add__ dunder methods respectively).
Use it by supplying backend='object'.

For example, imagine we want to perform a contraction of arrays made up of sympy [https://www.sympy.org] symbols:

import opt_einsum as oe
import numpy as np
import sympy

define the symbols
a, b, c, d, e, f, g, h, i, j, k, l = [sympy.symbols(oe.get_symbol(i)) for i in range(12)]
a * b + c * d
𝑑

define the tensors (you might explicitly specify `dtype=object`)
X = np.array([[a, b], [c, d]])
Y = np.array([[e, f], [g, h]])
Z = np.array([[i, j], [k, l]])

contract the tensors!
oe.contract('uv,vw,wu->u', X, Y, Z, backend='object')
array([i*(a*e + b*g) + k*(a*f + b*h), j*(c*e + d*g) + l*(c*f + d*h)],
dtype=object)

There are a few things to note here:

	The returned array is a numpy.ndarray but since it has dtype=object
it can really hold any python objects

	We had to explicitly use backend='object', since numpy.einsum
would have otherwise been dispatched to, which can’t handle dtype=object
(though numpy.tensordot in fact can)

	Although an optimized pairwise contraction order is used, the looping in each
single contraction is performed in python so performance will be
drastically lower than for numeric dtypes!

Input Format

The opt_einsum package was originally designed as a drop-in replacement for the np.einsum
function and supports all input formats that np.einsum supports. There are
two styles of input accepted, a basic introduction to which can be found in the
documentation for numpy.einsum. In addition to this, opt_einsum
extends the allowed index labels to unicode or arbitrary hashable, comparable
objects in order to handle large contractions with many indices.

‘Equation’ Input

As with numpy.einsum, here you specify an equation as a string,
followed by the array arguments:

import opt_einsum as oe
eq = 'ijk,jkl->li'
x, y = np.random.rand(2, 3, 4), np.random.rand(3, 4, 5)
z = oe.contract(eq, x, y)
z.shape
#> (5, 2)

However, in addition to the standard alphabet, opt_einsum also supports
unicode characters:

eq = "αβγ,βγδ->δα"
oe.contract(eq, x, y).shape
#> (5, 2)

This enables access to thousands of possible index labels. One way to access
these programmatically is through the function get_symbols:

oe.get_symbol(805)
#> 'α'

which maps an int to a unicode characater. Note that as with
numpy.einsum if the output is not specified with -> it will default
to the sorted order of all indices appearing once:

eq = "αβγ,βγδ" # "->αδ" is implicit
oe.contract(eq, x, y).shape
#> (2, 5)

‘Interleaved’ Input

The other input format is to ‘interleave’ the array arguments with their index
labels (’subscripts’) in pairs, optionally specifying the output indices as a
final argument. As with numpy.einsum, integers are allowed as these
index labels:

oe.contract(x, [1, 2, 3], y, [2, 3, 4], [4, 1]).shape
#> (5, 2)

with the default output order again specified by the sorted order of indices
appearing once. However, unlike numpy.einsum, in opt_einsum you can
also put anything hashable and comparable such as str in the subscript list.
A simple example of this syntax is:

x, y, z = np.ones((1, 2)), np.ones((2, 2)), np.ones((2, 1))
oe.contract(x, ('left', 'bond1'), y, ('bond1', 'bond2'), z, ('bond2', 'right'), ('left', 'right'))
#> array([[4.]])

The subscripts need to be hashable so that opt_einsum can efficiently process them, and
they should also be comparable so as to allow a default sorted output. For example:

x = np.array([[0, 1], [2, 0]])

original matrix
oe.contract(x, (0, 1))
#> array([[0, 1],
#> [2, 0]])

the transpose
oe.contract(x, (1, 0))
#> array([[0, 2],
#> [1, 0]])

original matrix, consistent behavior
oe.contract(x, ('a', 'b'))
#> array([[0, 1],
#> [2, 0]])

the transpose, consistent behavior
>>> oe.contract(x, ('b', 'a'))
#> array([[0, 2],
#> [1, 0]])

relative sequence undefined, can't determine output
>>> oe.contract(x, (0, 'a'))
#> TypeError: For this input type lists must contain either Ellipsis
#> or hashable and comparable object (e.g. int, str)

Install opt_einsum

You can install opt_einsum with conda, with pip, or by installing from source.

Conda

You can update opt_einsum using conda [https://www.anaconda.com/download/]:

conda install opt_einsum -c conda-forge

This installs opt_einsum and the NumPy dependency.

The opt_einsum package is maintained on the conda-forge channel [https://conda-forge.github.io/].

Pip

To install opt_einsum with pip there are a few options, depending on which
dependencies you would like to keep up to date:

	pip install opt_einsum

Install from Source

To install opt_einsum from source, clone the repository from github [https://github.com/dgasmith/opt_einsum]:

git clone https://github.com/dgasmith/opt_einsum.git
cd opt_einsum
python setup.py install

or use pip locally if you want to install all dependencies as well::

pip install -e .

Test

Test opt_einsum with py.test:

cd opt_einsum
pytest

Reusing Paths

If you expect to use a particular contraction repeatedly, it can make things simpler and more efficient not to compute the path each time.
Instead, supplying opt_einsum.contract_expression with the contraction string and the shapes of the tensors generates a opt_einsum.ContractExpression which can then be repeatedly called with any matching set of arrays.
For example:

my_expr = oe.contract_expression("abc,cd,dbe->ea", (2, 3, 4), (4, 5), (5, 3, 6))
print(my_expr)
#> <ContractExpression('abc,cd,dbe->ea')>
#> 1. 'dbe,cd->bce' [GEMM]
#> 2. 'bce,abc->ea' [GEMM]

The ContractExpression can be called with 3 arrays that match the original shapes without having to recompute the path:

x, y, z = (np.random.rand(*s) for s in [(2, 3, 4), (4, 5), (5, 3, 6)])
my_expr(x, y, z)
#> array([[3.08331541, 4.13708916],
#> [2.92793729, 4.57945185],
#> [3.55679457, 5.56304115],
#> [2.6208398 , 4.39024187],
#> [3.66736543, 5.41450334],
#> [3.67772272, 5.46727192]])

Note that few checks are performed when calling the expression, and while it will work for a set of arrays with the same ranks as the original shapes but differing sizes, it might no longer be optimal.

Specifying Constants

Often one generates contraction expressions where some of the tensor arguments
will remain constant across many calls.
opt_einsum.contract_expression allows you to specify the indices of
these constant arguments, allowing opt_einsum to build and then reuse as
many constant contractions as possible.

Take for example the equation:

eq = "ij,jk,kl,lm,mn->ni"

where we know that only the first and last tensors will vary between calls.
We can specify this by marking the middle three as constant - we then need to
supply the actual arrays rather than just the shapes to
opt_einsum.contract_expression:

A B C D E
shapes = [(9, 5), (5, 5), (5, 5), (5, 5), (5, 8)]

mark the middle three arrays as constant
constants = [1, 2, 3]

generate the constant arrays
B, C, D = [np.random.randn(*shapes[i]) for i in constants]

supplied ops are now mix of shapes and arrays
ops = (9, 5), B, C, D, (5, 8)

expr = oe.contract_expression(eq, *ops, constants=constants)
expr
#> <ContractExpression('ij,[jk,kl,lm],mn->ni', constants=[1, 2, 3])>

The expression now only takes the remaining two arrays as arguments (the
tensors with 'ij' and 'mn' indices), and will store as many reusable
constant contractions as possible.

.. code:: python

A1, E1 = np.random.rand(*shapes[0]), np.random.rand(*shapes[-1])
out1 = expr(A1, E1)
out1.shap
#> (8, 9)

A2, E2 = np.random.rand(*shapes[0]), np.random.rand(*shapes[-1])
out2 = expr(A2, E2)
out2.shape
#> (8, 9)

np.allclose(out1, out2)
#> False

print(expr)
#> <ContractExpression('ij,[jk,kl,lm],mn->ni', constants=[1, 2, 3])>
#> 1. 'jm,mn->jn' [GEMM]
#> 2. 'jn,ij->ni' [GEMM]

Where we can see that the expression now only has to perform
two contractions to compute the output.

!!! note
The constant part of an expression is lazily generated upon the first call
(specific to each backend), though it can also be explicitly built by calling
opt_einsum.contract.ContractExpression.evaluate_constants.

We can confirm the advantage of using expressions and constants by timing the
following scenarios, first setting
A = np.random.rand(*shapes[0]) and E = np.random.rand(*shapes[-1]).

Contract from scratch

%timeit oe.contract(eq, A, B, C, D, E)
#> 239 µs ± 5.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Contraction with an expression but no constants

expr_no_consts = oe.contract_expression(eq, *shapes)
%timeit expr_no_consts(A, B, C, D, E)
#> 76.7 µs ± 2.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Contraction with an expression and constants marked

%timeit expr(A, E)
#> 40.8 µs ± 1.22 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Although this gives us a rough idea, of course the efficiency savings are
hugely dependent on the size of the contraction and number of possible constant
contractions.

We also note that even if there are no constant contractions to perform, it
can be very advantageous to specify constant tensors for particular backends.
For instance, if a GPU backend is used, the constant tensors will be kept on
the device rather than being transferred each time.

Sharing Intermediates

If you want to compute multiple similar contractions with common terms, you can embed them in a opt_einsum.shared_intermediates context. Computations of subexpressions in this context will be memoized, and will be garbage collected when the contexts exits.

For example, suppose we want to compute marginals at each point in a factor chain:

inputs = 'ab,bc,cd,de,ef'
factors = [np.random.rand(1000, 1000) for _ in range(5)]

%%timeit
marginals = {output: contract('{}->{}'.format(inputs, output), *factors)
 for output in 'abcdef'}
#> 1 loop, best of 3: 5.82 s per loop

To share this computation, we can perform all contractions in a shared context:

%%timeit
with shared_intermediates():
 marginals = {output: contract('{}->{}'.format(inputs, output), *factors)
 for output in 'abcdef'}
#> 1 loop, best of 3: 1.55 s per loop

If it is difficult to fit your code into a context, you can instead save the sharing cache for later reuse.

with shared_intermediates() as cache: # create a cache
 pass
marginals = {}
for output in 'abcdef':
 with shared_intermediates(cache): # reuse a common cache
 marginals[output] = contract('{}->{}'.format(inputs, output), *factors)
del cache # garbage collect intermediates

Note that sharing contexts can be nested, so it is safe to to use opt_einsum.shared_intermediates in library code without leaking intermediates into user caches.

!!! note
By default a cache is thread safe, to share intermediates between threads explicitly pass the same cache to each thread.

The Branching Path

While the optimal path is guaranteed to find the smallest estimate FLOP
cost, it spends a lot of time exploring paths which are not likely to result in
an optimal path. For instance, outer products are usually not advantageous
unless absolutely necessary. Additionally, by trying a ‘good’ path first, it
should be possible to quickly establish a threshold FLOP cost which can then be
used to prune many bad paths.

The branching strategy (provided by opt_einsum.paths.branch) does
this by taking the recursive, depth-first approach of
opt_einsum.paths.optimal, whilst also sorting potential contractions
based on a heuristic cost, as in opt_einsum.paths.greedy.

There are two main flavours:

	optimize='branch-all': explore all inner products, starting with
those that look best according to the cost heuristic.

	optimize='branch-2': similar, but at each step only explore the
estimated best two possible contractions, leading to a maximum of
2^N paths assessed.

In both cases, opt_einsum.paths.branch takes an active approach to
pruning paths well before they hit the best total FLOP count, by comparing
them to the FLOP count (times some factor) achieved by the best path at the
same point in the contraction.

There is also 'branch-1', which, since it only explores a single path at
each step does not really ‘branch’ - this is essentially the approach of
'greedy'.
In comparison, 'branch-1' will be slower for large expressions, but for
small to medium expressions it might find slightly higher quality contractions
due to considering individual flop costs at each step.

The default optimize='auto' mode of opt_einsum will use
'branch-all' for 5 or 6 tensors, though it should be able to handle
12-13 tensors in a matter or seconds. Likewise, 'branch-2' will be used for
7 or 8 tensors, though it should be able to handle 20-22 tensors in a matter of
seconds. Finally, 'branch-1' will be used by 'auto' for expressions of
up to 14 tensors.

Customizing the Branching Path

The ‘branch and bound’ path can be customized by creating a custom
opt_einsum.paths.BranchBound instance. For example:

optimizer = oe.BranchBound(nbranch=3, minimize='size', cutoff_flops_factor=None)
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)

You could then tweak the settings (e.g. optimizer.nbranch = 4) and the best
bound found so far will persist and be used to prune paths on the next call:

optimizer.nbranch = 4
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)

Custom Path Optimizers

If you want to implement or just experiment with custom contaction paths then
you can easily by subclassing the opt_einsum.paths.PathOptimizer
object. For example, imagine we want to test the path that just blindly
contracts the first pair of tensors again and again. We would implement this
as:

import opt_einsum as oe

class MyOptimizer(oe.paths.PathOptimizer):

 def __call__(self, inputs, output, size_dict, memory_limit=None):
 return [(0, 1)] * (len(inputs) - 1)

Once defined we can use this as:

import numpy as np

set-up a random contraction
eq, shapes = oe.helpers.rand_equation(10, 3, seed=42)
arrays = list(map(np.ones, shapes))

set-up our optimizer and use it
optimizer = MyOptimizer()
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)

print(path)
#> [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]

print(path_info.speedup)
#> 133.21363671496357

Note that though we still get a considerable speedup over einsum this is
of course not a good strategy to take in general.

Custom Random Optimizers

If your custom path optimizer is inherently random, then you can reuse all the
machinery of the random-greedy approach. Namely:

	A max-repeats or max-time approach

	Minimization with respect to total flops or largest intermediate size

	Parallelization using a pool-executor

This is done by subclassing the
opt_einsum.paths.RandomOptimizer
object and implementing a
setup method. Here’s an example where we just randomly select any path
(again, although we get a considerable speedup over einsum this is
not a good strategy to take in general):

from opt_einsum.path_random import ssa_path_compute_cost

class MyRandomOptimizer(oe.path_random.RandomOptimizer):

 @staticmethod
 def random_path(r, n, inputs, output, size_dict):
 """Picks a completely random contraction order.
 """
 np.random.seed(r)
 ssa_path = []
 remaining = set(range(n))
 while len(remaining) > 1:
 i, j = np.random.choice(list(remaining), size=2, replace=False)
 remaining.add(n + len(ssa_path))
 remaining.remove(i)
 remaining.remove(j)
 ssa_path.append((i, j))
 cost, size = ssa_path_compute_cost(ssa_path, inputs, output, size_dict)
 return ssa_path, cost, size

 def setup(self, inputs, output, size_dict):
 """Prepares the function and arguments to repeatedly call.
 """
 n = len(inputs)
 trial_fn = self.random_path
 trial_args = (n, inputs, output, size_dict)
 return trial_fn, trial_args

Which we can now instantiate using various other options:

optimizer = MyRandomOptimizer(max_repeats=1000, max_time=10,
 parallel=True, minimize='size')
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)

print(path)
#> [(3, 4), (1, 3), (0, 3), (3, 5), (3, 4), (3, 4), (1, 0), (0, 1), (0, 1)]

print(path_info.speedup)
#> 712829.9451056132

There are a few things to note here:

	The core function (MyRandomOptimizer.random_path here), should take a
trial number r as it first argument

	It should return a ssa_path (see opt_einsum.paths.ssa_to_linear and
opt_einsum.paths.linear_to_ssa) as well as a flops-cost and max-size.

	The setup method prepares this function, as well as any input to it,
so that the trials will look roughly like
[trial_fn(r, *trial_args) for r in range(max_repeats)]. If you need to
parse the standard arguments (into a network for example), it thus only
needs to be done once per optimization

More details about
opt_einsum.paths.RandomOptimizer
options can
be found in RandomGreedyPathPage section.

The Dynamic Programming Path

The dynamic programming (DP) approach described in reference [1] provides an efficient
way to find an asymptotically optimal contraction path by running the following steps:

	Compute all traces, i.e. summations over indices occurring exactly in one
input.

	Decompose the contraction graph of inputs into disconnected subgraphs. Two
inputs are connected if they share at least one summation index.

	Find the contraction path for each of the disconnected subgraphs using a
DP approach: The optimal contraction path for all sets of n (ranging
from 1 to the number of inputs) connected tensors is found by combining
sets of m and n-m tensors.

Note that computing all the traces in the very beginning can never lead to a
non-optimal contraction path.

Contractions of disconnected subgraphs can be optimized independently, which
still results in an optimal contraction path. However, the computational
complexity of finding the contraction path is drastically reduced: If the
subgraphs consist of n1, n2, … inputs, the computational complexity
is reduced from O(exp(n1 + n2 + ...)) to O(exp(n1) + exp(n2) + ...).

The DP approach will only perform pair contractions and by default will never
compute intermediate outer products as in reference [1] it is shown that this
always results in an asymptotically optimal contraction path.

A major optimization for DP is the cost capping strategy: The DP optimization
only memorizes contractions for a subset of inputs, if the total cost for this
contraction is smaller than the cost cap. The cost cap is initialized with
the minimal possible cost, i.e. the product of all output dimensions, and is
iteratively increased by multiplying it with the smallest dimension
until a contraction path including all inputs is found.

Note that the worst case scaling of DP is exponential in the number
of inputs. Nevertheless, if the contraction graph is not completely random,
but exhibits a certain kind of structure, it can be used for large
contraction graphs and is guaranteed to find an asymptotically optimal
contraction path. For this reason it is the most frequently used contraction
path optimizer in the field of tensor network states.

More specifically, the search is performed over connected subgraphs, which, for
example, planar and tree-like graphs have far fewer of. As a rough guide, if
the graph is planar, expressions with many tens of tensors are tractable,
whereas if the graph is tree-like, expressions with many hundreds of tensors
are tractable.

[1] Robert N. C. Pfeifer, Jutho Haegeman, and Frank Verstraete Phys. Rev. E 90, 033315 (2014). https://arxiv.org/abs/1304.6112

Customizing the Dynamic Programming Path

The default optimize='dp' approach has sensible defaults but can be
customized with the opt_einsum.paths.DynamicProgramming object.

import opt_einsum as oe

optimizer = oe.DynamicProgramming(
 minimize='size', # optimize for largest intermediate tensor size
 search_outer=True, # search through outer products as well
 cost_cap=False, # don't use cost-capping strategy
)

oe.contract(eq, *arrays, optimize=optimizer)

!!! warning
Note that searching outer products will most likely drastically slow down
the optimizer on all but the smallest examples.

The values that minimize can take are:

	'flops': minimize the total number of scalar operations.

	'size': minimize the size of the largest intermediate.

	'write': minimize the combined size of all intermediate tensors -
approximately speaking the amount of memory that will be written. This is
relevant if you were to automatically differentiate through the
contraction, which naively would require storing all intermediates.

	'combo' - minimize flops + alpha * write summed over intermediates, a
default ratio of alpha=64 is used, or it can be customized with
f'combo-{alpha}'.

	'limit' - minimize max(flops, alpha * write) summed over intermediates, a
default ratio of alpha=64 is used, or it can be customized with f'limit-{alpha}'.

The last two take into account the fact that real contraction performance can
be bound by memory speed, and so favor paths with higher arithmetic
intensity. The default value of alpha=64 is reasonable for both typical
CPUs and GPUs.

The Greedy Path

The 'greedy' approach provides a very efficient strategy for finding
contraction paths for expressions with large numbers of tensors.
It does this by eagerly choosing contractions in three stages:

	Eagerly compute any Hadamard products (in arbitrary order – this is
commutative).

	Greedily contract pairs of remaining tensors, at each step choosing the
pair that maximizes reduced_size – these are generally inner
products.

	Greedily compute any pairwise outer products, at each step choosing
the pair that minimizes sum(input_sizes).

The cost heuristic reduced_size is simply the size of the pair of potential
tensors to be contracted, minus the size of the resulting tensor.

The greedy algorithm has space and time complexity O(n * k) where n
is the number of input tensors and k is the maximum number of tensors that
share any dimension (excluding dimensions that occur in the output or in every
tensor). As such, the algorithm scales well to very large sparse contractions
of low-rank tensors, and indeed, often finds the optimal, or close to optimal
path in such cases.

The greedy functionality is provided by opt_einsum.paths.greedy,
and is selected by the default optimize='auto' mode of opt_einsum for
expressions with many inputs. Expressions of up to a thousand tensors
should still take well less than a second to find paths for.

Optimal Scaling Misses

The greedy algorithm, while inexpensive, can occasionally miss optimal scaling in some circumstances as seen below. The greedy algorithm prioritizes expressions which remove the largest indices first, in this particular case this is the incorrect choice and it is difficult for any heuristic algorithm to “see ahead” as would be needed here.

It should be stressed these cases are quite rare and by default contract uses the optimal path for four and fewer inputs as the cost of evaluating the optimal path is similar to that of the greedy path. Similarly, for 5-8 inputs, contract uses one of the
branching strategies which can find higher quality paths.

M = np.random.rand(35, 37, 59)
A = np.random.rand(35, 51, 59)
B = np.random.rand(37, 51, 51, 59)
C = np.random.rand(59, 27)

path, desc = oe.contract_path('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="greedy")
print(desc)
#> Complete contraction: xyf,xtf,ytpf,fr->tpr
#> Naive scaling: 6
#> Optimized scaling: 5
#> Naive FLOP count: 2.146e+10
#> Optimized FLOP count: 4.165e+08
#> Theoretical speedup: 51.533
#> Largest intermediate: 5.371e+06 elements
#> --
#> scaling BLAS current remaining
#> --
#> 5 False ytpf,xyf->tpfx xtf,fr,tpfx->tpr
#> 4 False tpfx,xtf->tpf fr,tpf->tpr
#> 4 GEMM tpf,fr->tpr tpr->tpr

path, desc = oe.contract_path('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="optimal")
print(desc)
#> Complete contraction: xyf,xtf,ytpf,fr->tpr
#> Naive scaling: 6
#> Optimized scaling: 4
#> Naive FLOP count: 2.146e+10
#> Optimized FLOP count: 2.744e+07
#> Theoretical speedup: 782.283
#> Largest intermediate: 1.535e+05 elements
#> --
#> scaling BLAS current remaining
#> --
#> 4 False xtf,xyf->tfy ytpf,fr,tfy->tpr
#> 4 False tfy,ytpf->tfp fr,tfp->tpr
#> 4 TDOT tfp,fr->tpr tpr->tpr

So we can see that the greedy algorithm finds a path which is about 16
times slower than the optimal one. In such cases, it might be worth using
one of the more exhaustive optimization strategies: 'optimal',
'branch-all' or branch-2 (all of which will find the optimal path in
this example).

Customizing the Greedy Path

The greedy path is a local optimizer in that it only ever assesses pairs of
tensors to contract, assigning each a heuristic ‘cost’ and then choosing the
‘best’ of these. Custom greedy approaches can be implemented by supplying
callables to the cost_fn and choose_fn arguments of
opt_einsum.paths.greedy.

Introduction

Performing an optimized tensor contraction to speed up einsum involves two
key stages:

	Finding a pairwise contraction order, or ‘path’.

	Performing the sequence of contractions given this path.

The better the quality of path found in the first step, the quicker the actual
contraction in the second step can be – often dramatically. However, finding
the optimal path is an NP-hard problem that can quickly become intractable,
meaning that a balance must be struck between the time spent finding a path,
and its quality. opt_einsum handles this by using several path finding
algorithms, which can be manually specified using the optimize keyword.
These are:

	The 'optimal' strategy - an exhaustive search of all possible paths

	The 'dynamic-programming' strategy - a near-optimal search based off dynamic-programming

	The 'branch' strategy - a more restricted search of many likely paths

	The 'greedy' strategy - finds a path one step at a time using a cost
heuristic

By default (optimize='auto'), opt_einsum.contract will select the
best of these it can while aiming to keep path finding times below around 1ms.
An analysis of each of these approaches’ performance can be found at the bottom of this page.

For large and complex contractions, there is the 'random-greedy' approach,
which samples many (by default 32) greedy paths and can be customized to
explicitly spend a maximum amount of time searching. Another preset,
'random-greedy-128', uses 128 paths for a more exhaustive search.
See RandomGreedyPath page for more details on configuring these.

Finally, there is the 'auto-hq' preset which targets a much larger search
time (~1sec) in return for finding very high quality paths, dispatching to the
'optimal', 'dynamic-programming' and then 'random-greedy-128' paths
depending on contraction size.

If you want to find the path separately to performing the
contraction, or just inspect information about the path found, you can use the
function opt_einsum.contract_path.

Examining the Path

As an example, consider the following expression found in a perturbation theory (one of ~5,000 such expressions):

'bdik,acaj,ikab,ajac,ikbd'

At first, it would appear that this scales like N^7 as there are 7 unique indices; however, we can define a intermediate to reduce this scaling.

(N^5 scaling)
a = 'bdik,ikab,ikbd'

(N^4 scaling)
result = 'acaj,ajac,a'

This is a single possible path to the final answer (and notably, not the most optimal) out of many possible paths. Now, let opt_einsum compute the optimal path:

import opt_einsum as oe

Take a complex string
einsum_string = 'bdik,acaj,ikab,ajac,ikbd->'

Build random views to represent this contraction
unique_inds = set(einsum_string) - {',', '-', '>'}
index_size = [10, 17, 9, 10, 13, 16, 15, 14, 12]
sizes_dict = dict(zip(unique_inds, index_size))
views = oe.helpers.build_views(einsum_string, sizes_dict)

path, path_info = oe.contract_path(einsum_string, *views)

print(path)
#> [(0, 4), (1, 3), (0, 1), (0, 1)]

print(path_info)
#> Complete contraction: bdik,acaj,ikab,ajac,ikbd->
#> Naive scaling: 7
#> Optimized scaling: 4
#> Naive FLOP count: 2.387e+8
#> Optimized FLOP count: 8.068e+4
#> Theoretical speedup: 2958.354
#> Largest intermediate: 1.530e+3 elements
#> --
#> scaling BLAS current remaining
#> --
#> 4 0 ikbd,bdik->ikb acaj,ikab,ajac,ikb->
#> 4 GEMV/EINSUM ikb,ikab->a acaj,ajac,a->
#> 3 0 ajac,acaj->a a,a->
#> 1 DOT a,a-> ->

We can then check that actually performing the contraction produces the expected result:

import numpy as np

einsum_result = np.einsum("bdik,acaj,ikab,ajac,ikbd->", *views)
contract_result = oe.contract("bdik,acaj,ikab,ajac,ikbd->", *views)

np.allclose(einsum_result, contract_result)
#> True

By contracting terms in the correct order we can see that this expression can be computed with N^4 scaling. Even with the overhead of finding the best order or ‘path’ and small dimensions,
opt_einsum is roughly 3000 times faster than pure einsum for this expression.

Format of the Path

Let us look at the structure of a canonical einsum path found in NumPy and its optimized variant:

einsum_path = [(0, 1, 2, 3, 4)]
opt_path = [(1, 3), (0, 2), (0, 2), (0, 1)]

In opt_einsum each element of the list represents a single contraction.
In the above example the einsum_path would effectively compute the result as a single contraction identical to that of einsum, while the
opt_path would perform four contractions in order to reduce the overall scaling.
The first tuple in the opt_path, (1,3), pops the second and fourth terms, then contracts them together to produce a new term which is then appended to the list of terms, this is continued until all terms are contracted.
An example should illuminate this:

scaling GEMM current remaining

terms = ['bdik', 'acaj', 'ikab', 'ajac', 'ikbd'] contraction = (1, 3)
 3 False ajac,acaj->a bdik,ikab,ikbd,a->
terms = ['bdik', 'ikab', 'ikbd', 'a'] contraction = (0, 2)
 4 False ikbd,bdik->bik ikab,a,bik->
terms = ['ikab', 'a', 'bik'] contraction = (0, 2)
 4 False bik,ikab->a a,a->
terms = ['a', 'a'] contraction = (0, 1)
 1 DOT a,a-> ->

A path specified in this format can explicitly be supplied directly to
opt_einsum.contract using the optimize keyword:

contract_result = oe.contract("bdik,acaj,ikab,ajac,ikbd->", *views, optimize=opt_path)

np.allclose(einsum_result, contract_result)
#> True

Performance Comparison

The following graphs should give some indication of the tradeoffs between path
finding time and path quality. They are generated by finding paths with each
possible algorithm for many randomly generated networks of n tensors with
varying connectivity.

First we have the time to find each path as a function of the number of terms
in the expression:

[image: ../_images/path_finding_time.png]Path Finding

Clearly the exhaustive ('optimal', 'branch-all') and exponential
('branch-2') searches eventually scale badly, but for modest amounts of
terms they incur only a small overhead. The 'random-greedy' approach is not
shown here as it is simply max_repeats times slower than the 'greedy'
approach - at least if not parallelized.

Next we can look at the average FLOP speedup (as compared to the easiest path
to find, 'greedy'):

[image: ../_images/path_found_flops.png]Path Finding

One can see that the hierarchy of path qualities is:

	'optimal' (used by auto for n <= 4)

	'branch-all' (used by auto for n <= 6)

	'branch-2' (used by auto for n <= 8)

	'branch-1' (used by auto for n <= 14)

	'greedy' (used by auto for anything larger)

!!! note
The performance of the 'random=greedy' approach (which is never used
automatically) can be found separately in RandomGreedyPath section.

There are a few important caveats to note with this graph. Firstly, the
benefits of more advanced path finding are very dependent on the complexity of
the expression. For ‘simple’ contractions, all the different approaches will
mostly find the same path (as here). However, for ‘tricky’ contractions, there
will be certain cases where the more advanced algorithms will find much better
paths. As such, while this graph gives a good idea of the relative performance
of each algorithm, the ‘average speedup’ is not a perfect indicator since
worst-case performance might be more critical.

Note that the speedups for any of the methods as compared to a standard
einsum or a naively chosen path (such as path=[(0, 1), (0, 1), ...])
are all exponentially large and not shown.

The Optimal Path

The most optimal path can be found by searching through every possible way to contract the tensors together, this includes all combinations with the new intermediate tensors as well.
While this algorithm scales like N!, and can often become more costly to compute than the unoptimized contraction itself, it provides an excellent benchmark.
The function that computes this path in opt_einsum is called opt_einsum.paths.optimal and works by performing a recursive, depth-first search. By keeping track of the
best path found so far, in terms of total estimated FLOP count, the search can
then quickly prune many paths as soon as as they exceed this best.
This optimal strategy is used by default with the optimize='auto' mode of
opt_einsum for 4 tensors or less, though it can handle expressions of up to
9-10 tensors in a matter of seconds.

Let us look at an example:

Contraction: abc,dc,ac->bd

Build a list with tuples that have the following form:

#> iteration 0:
#> "(cost, path, list of input sets remaining)"
#> [(0, [], [set(['a', 'c', 'b']), set(['d', 'c']), set(['a', 'c'])]]

Since this is iteration zero, we have the initial list of input sets.
We can consider three possible combinations where we contract list positions (0, 1), (0, 2), or (1, 2) together:

#> iteration 1:
#> [(9504, [(0, 1)], [set(['a', 'c']), set(['a', 'c', 'b', 'd'])]),
#> (1584, [(0, 2)], [set(['c', 'd']), set(['c', 'b'])]),
#> (864, [(1, 2)], [set(['a', 'c', 'b']), set(['a', 'c', 'd'])])]

We have now run through the three possible combinations, computed the cost of the contraction up to this point, and appended the resulting indices from the contraction to the list.
As all contractions only have two remaining input sets the only possible contraction is (0, 1):

#> iteration 2:
#> [(28512, [(0, 1), (0, 1)], [set(['b', 'd'])]),
#> (3168, [(0, 2), (0, 1)], [set(['b', 'd'])]),
#> (19872, [(1, 2), (0, 1)], [set(['b', 'd'])])]

The final contraction cost is computed, and we choose the second path from the list as the overall cost is the lowest.

The Random-Greedy Path

For large and complex contractions the exhaustive approaches will be too slow
while the greedy path might be very far from optimal. In this case you might
want to consider the 'random-greedy' path optimizer. This samples many
greedy paths and selects the best one found, which can often be exponentially
better than the average.

import opt_einsum as oe
import numpy as np
import math

eq, shapes = oe.helpers.rand_equation(40, 5, seed=1, d_max=2)
arrays = list(map(np.ones, shapes))

path_greedy = oe.contract_path(eq, *arrays, optimize='greedy')[1]
print(math.log2(path_greedy.opt_cost))
#> 36.04683022558587

path_rand_greedy = oe.contract_path(eq, *arrays, optimize='random-greedy')[1]
print(math.log2(path_rand_greedy.opt_cost))
#> 32.203616699170865

So here the random-greedy approach has found a path about
16 times quicker (= 2^(36 - 32)).

This approach works by randomly choosing from the best n contractions at
each step, weighted by a
Boltzmann factor [https://en.wikipedia.org/wiki/Boltzmann_distribution] with
respect to the contraction with the ‘best’ cost. As such, contractions with
very similar costs will be explored with equal probability, whereas those with
higher costs will be less likely, but still possible. In this way, the
optimizer can randomly explore the huge space of possible paths, but in a
guided manner.

The following graph roughly demonstrates the potential benefits of the
'random-greedy' algorithm, here for large randomly generated contractions,
with either 8, 32 (the default), or 128 repeats:

[image: ../_images/path_found_flops_random.png]Path Finding

!!! note
Bear in mind that such speed-ups are not guaranteed - it very much depends
on how structured or complex your contractions are.

Customizing the Random-Greedy Path

The random-greedy optimizer can be customized by instantiating your own
opt_einsum.paths.RandomGreedy
object. Here you can control:

	temperature - how far to stray from the locally ‘best’ contractions

	rel_temperature - whether to normalize the temperature

	nbranch - how many contractions (branches) to consider at each step

	cost_fn - how to cost potential contractions

There are also the main
opt_einsum.paths.RandomOptimizer
options:

	max_repeats - the maximum number of repeats

	max_time - the maximum amount of time to run for (in seconds)

	minimize - whether to minimize for total 'flops' or 'size' of the
largest intermediate

For example, here we’ll create an optimizer, then change its temperature
whilst reusing it. We’ll also set a high max_repeats and instead use a
maximum time to terminate the search:

optimizer = oe.RandomGreedy(max_time=2, max_repeats=1_000_000)

for T in [1000, 100, 10, 1, 0.1]:
 optimizer.temperature = T
 path_rand_greedy = oe.contract_path(eq, *arrays, optimize=optimizer)[1]
 print(math.log2(optimizer.best['flops']))

#> 32.81709395639357
#> 32.67625007170783
#> 31.719756871539033
#> 31.62043317835677
#> 31.253305891247

the total number of trials so far
print(len(optimizer.costs))
#> 2555

So we have improved a bit on the standard 'random-greedy' (which performs 32 repeats by default).
The optimizer object now stores both the best path
found so far - optimizer.path - as well as the list of flop-costs and
maximum sizes found for each trial - optimizer.costs and
optimizer.sizes respectively.

Parallelizing the Random-Greedy Search

Since each greedy attempt is independent, the random-greedy approach is
naturally suited to parallelization. This can be automatically handled by
specifying the parallel keyword like so:

use same number of processes as cores
optimizer = oe.RandomGreedy(parallel=True)

or use specific number of processes
optimizer = oe.RandomGreedy(parallel=4)

!!! warning

The pool-executor used to perform this parallelization is the
`ProcessPoolExecutor` from the [`concurrent.futures`
](https://docs.python.org/3/library/concurrent.futures.html) module.

For full control over the parallelization you can supply any
pool-executor like object, which should have an API matching the Python 3
concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html%3E]
module:

from concurrent.futures import ProcessPoolExecutor

pool = ProcessPoolExecutor()
optimizer = oe.RandomGreedy(parallel=pool, max_repeats=128)
path_rand_greedy = oe.contract_path(eq, *arrays, optimize=optimizer)[1]

print(math.log2(optimizer.best['flops']))
#> 31.64992600300931

Other examples of such pools include:

	loky [https://loky.readthedocs.io/en/latest/]

	dask.distributed [http://distributed.dask.org/en/latest/]

	mpi4py [https://mpi4py.readthedocs.io/en/latest/]

Function Reference

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/path_found_flops_random.png
—f— greedy —f— 8trials —f— 32trials —f— 128trials

102

10!

R /fl I
i \V
B -
R
s =
AN -
1
e . -
. |
I ot |
\ |
\
g & % & %
(Apo248 Jano) dnpaads S04

Number of Terms

_static/ajax-loader.gif

_images/path_finding_time.png
greedy

branch-all branch-1

dp

random-greedy

branch-2

optimal

10t

3 5 % %

[s] uonoesyuo) pui4 03 swi |

10

200

100

20
Number of Terms

10

_images/path_found_flops.png
~— greedy

random-greedy

branch-1

I
T
I
T

branch-all
branch-2

I
T
I
T

dp
optimal

I
T
I
T

ax10°

3x10°

E
B

(Apa3.3 uano) dnpaads Sd014

2x10

10t
Number of Terms

6x10°

ax10°

3x10°

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/ex_dask_reuse_graph.png
finalize#0 finalize-#4

finalize finalize
(‘sum-aggregate-#1',) (‘sum-aggregate-#5',)
Y Y
(‘sum-tensordot-sum-aggregate#1',) (‘sum-tensordot-sum-aggregate#5',)
[y [
sum(...) sum(...)
(transpose#3, 0, 0) (transpose#6', 0, 0) (transpose+#2', 0, 0)
(‘sum-sum-aggregate-tensordot-transpose#3', 0, 0) (‘sum-sum-aggregate-tensordot-transpose#6', 0, 0) (‘sum-sum-aggregate-tensordot-transpose#2', 0, 0)
(dea’, 0,0, 0) (ede’, 0,0, 0) (eda’, 0,0, 0) (eb,0,0) | | (ab!, 0,0)
[} [}
getter getter getter getter getter

dca cde cda eb ab list-#7

_static/up.png

